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Introduction

* Fifth-generation (5G) and beyond
communications are mainly characterized by
1) massive connectivity,
2) ultra-reliability and low latency, and
3) increased throughput.

* Satisfying these objectives in conjunction with
the rapid growth of the Internet of Things
(loT) applications represents a challenging
task, especially in highly dynamic and
heterogeneous environments.

* A promising approach is to adopt unmanned
aerial vehicles (UAVs) and Satellites as aerial
user equipments (UEs) or flying base stations

(BSs).
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Introduction: Drawback of Current Communication System?

* The current wireless communication system fully depends on the
infrastructure in order to provide services to mobile users. However, the
deployment and operational cost of the infrastructure are high.

* Actually, mobile users can not get any services when infrastructure
collapses because of the natural disasters.

* Moreover, users especially in the mountain areas, countryside and deep
sea also can get internet access because it is difficult and not possible to
deploy infrastructure for wireless communication.
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Introduction: Drawback of Current Communication System?

Only 67.9% of world population can get internet access in till 2023. So,
how about the remaining 32.1 % ??7??

WORLD INTERNET USAGE AND POPULATION STATISTICS
2023 Year Estimates
World Regions Population Population | Internet Users Penetration Growth Interneﬂt
| 2022 Est.) % of World 31 Dec 2021 Rate (% Pop.) § 2000-2023 | World %
Africa 1,394,588,547 17.6 % 601,940,734 43.2 % 13,233 % 11.2 %
Asia 4,352,169,960 549%| 2,916,890,209 67.0 % 2,452 % b4 2 %
Europe 837,472,045 10.6 % 747,214,734 892 % 611 % 13.9 %
Latin America [ Carib. 664,099,541 8.4 % 534,526,057 80.5 % 2,858 % 9.9 %
North America 372,555,585 4.7 % 347,916,694 93.4 % 222 %o 6.5 %
Middle East 268,302,501 3.4 % 206,760,743 771 % 6,194 % 3.8 %
Oceania [ Australia 43,602,955 0.5 % 30,549,185 701 % 301 % 0.6 %
WORLD TOTAL 7,932,791,734 100.0 % | 5,385,798,406 67.9 % 1,392 % | 100.0 %

N
KYUNG HEE Source: https://www.internetworldstats.com/stats.htm @/
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Introduction: Al /ML e

* In particular, UAV-based communications can improve the network performance in emergency
situations by providing rapid service recovery and by offloading in extremely crowded
scenarios.

* The integration of artificial intelligence (Al) and machine-learning (ML) techniques in wireless
networks can leverage intelligence for addressing various issues.

* Thus, the combination of Al/ML and UAVs or Satellites appears to be strongly correlated in
different disciplines and applications and throughout the network layers, promising
unprecedented performance gains and complexity reduction.

Artificial intelligence

&

Machine learning

Machine learning

&

Deep learning

Deep learning

t(zy KYUNG HEE Bithas, P.S.; Michailidis, E.T.; Nomikos, N.; Vouyioukas, D.; Kanatas, A.G. A Survey on Machine-Learning Techniques for UAV-Based (N/
"/ e Communications. Sensors 2019, 19, 5170 LR L
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UAV-Assisted Wireless Networks Overview

Cube satellite

é
E Airship
C@D Drone

()
Base Station/ Small-cell Base Station/AP

AI
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‘.. EBE ©) 7 @ On-demand unmanned aerial vehicle base station
N ,,,,AE s deployment
N == e . .
S S 7 ©® On demand data collection and analysis
\"‘32{"/ © Providing user-oriented services in next-generation

mobile devices
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Ongoing Projects: (SpaceX : Starlink Project) 9

SATELLITES 1000km +

KEEPING SPACE
CLEAN

Starlink is on the leading edge of on-orbit debris mitigation,
meeting or exceeding all regulatory and industry standards.

At end of life, the satellites will utilize their on-board propulsion
system to deorbit over the course of a few months. In the
unlikely event the propulsion system becomes inoperable, the
satellites will burn up in Earth’s atmosphere within 1-5 years,
significantly less than the hundreds or thousands of years
required at higher altitudes.

STARLINK 550km

y KYUNG HEE W
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* Each satellite weighs
approximately 573 pounds
(260kg) and features a
compact, flat-panel design that
minimizes volume, allowing for a
dense launch stack to take full
advantage of the launch
capabilities of SpaceX's Falcon
Q rocket.

* The satellites will be around
350 miles above earth.

R https://www.starlink.com/ (WN
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Ongoing Projects: (SpaceX : Starlink Project)

How fast will Starlink internet speeds be like?

* The latency should be between 25ms and 35 ms. This is
fast enough for most internet tasks, including gaming.

* Download speeds will be pretty quick, at about 1Gbps

How many satellites will be needed for the
services?

Federal Communications Commission (FCC) allows to put
12,000 SpaceX satellites above the planet

When can Starlink internet be available?
- launched in 2021

&Y KYUNG HEE
UNIVERSITY

https://www.starlink.com/ werworminG

EEEEEEEEEEEEEEE



Ongoing Projects: (SpaceX : Starlink Project)

* Ku (12-18 GHz), Ka (26.5-40 GHz) and V (40-75 GHz) bands.
* V and Ku bands for network’s users.

* V and Ka bands will be used to connect to gateways and for tracking, telemetry and control
purpose.

Transmissions from satellite to user terminals: 10.7 - 12.7 GHz and 37.5 - 42.5 GHz

Satellite to gateway transmissions: 17.8 — 186 GHz and 188 - 193 GHz and 37 5 - 42 5 GHz

Transmissions from terminals to satellites: 14.0 - 14.5 GHz and 47 2 — 502 GHz and 50.4 — 51.4 GHz

Transmissions from gateways to satellites: 27.5 - 291 GHz and 295 - 300 GHz and 47 .2 - 50.2 GHz and 50.4 — 51.4 GHz

Tracking, telemetry and control (downlink): 12.15 - 12.25 GHz and 18.55 - 16.60 GHz and 37.5 - 37.75 GHz

Tracking, telemetry and control (uplink): 13.85 - 14 .00 GHz and 47 .2 — 47 45 GHz

https: / /www.elonx.net/starlink-
compendium /#:~:text=Here%20is%20a%20breakdown¥%200f,GHz%20and%2037.5%20%E2%80%93%2042.5%20GHz&text=Transmissions%20from%20
gateways%20to%20satellites, GHz%%20and%2050.4%20%E2%80%%23%2051.4%20GHz
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Ongoing Projects: Google’s Project Loon (High Altitude Platform)

Goolge’s Project Loon: A network of balloons travelling on the edge of
space is designed to connect people in rural and remote areas, helping fill
coverage gaps, and brining people back online after natural disasters.

&Y KYUNG HEE
5 _ UNIVERSITY
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Ongoing Projects: Google’s Project Loon (High Altitude Platform)

The Loon Flight System consists of :

Balloon envelope

_ Apex Box
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The payload : e
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Ongoing Projects: Google’s Project Loon (High Altitude qu’rform)

Balloon Envelope

Made from polyethylene, each tennis-court-
sized balloon envelope actually consists of a
balloon inside of a balloon. A fixed amount of
lift gas in the inner balloon keeps the system
aloft. Adding or releasing outside air to the
outer balloon changes density, allowing the
system to ascend or descend when needed.
The balloons are built to last for hundreds of
days before landing back on Earth in a
controlled descent.

&Y KYUNG HEE
UNIVERSITY

https://loon.com/technology/flight-systems/ s

EEEEEEEEEEEEEEE



Ongoing Projects: Google’s Project Loon (High Altitude Pld’rform“

r ' =)
SOLAR PANELS R—— .'. ALTITUDE CONTROL SYSTEM

J Bus

The bus consists of the hardware necessary for
safe flight operations, including highly efficient
solar panels that power the system, an altitude
control system for navigation, and a parachute
that deploys automatically to guide the balloon
safely back to Earth after flight. For added
safety, Loon includes redundant satellite
communications links and transponders for
constant visibility to air traffic control.

SAFETY GEAR

L —
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Ongoing Projects: Google’s Project Loon (High Altitude PIc:’rform)

-
LTE ANTENNA

Payload

The payload consists of the communications
equipment required to deliver connectivity,
including the radio base station and antennas.

GIMBALS

$RY KYUNG HEE
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Ongoing Projects: Google’s Project Loon (High Altitude Platform)

HOW IT WORKS

* Loon integrates with mobile network
operators’ existing network
infrastructure to extend their
coverage.

* We maximize value by deliverin
seamless connectivity to subscribers
through a unique solution of ground
gateways, flight vehicles and
software.

b https://loon.com/technology/flight-systems/ .
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The Differences Between UAY, UAS, and Autonomous Drones

What Is an Unmanned Aerial Vehicle (UAV)?

“UAV” refers specifically to aircraft that can be remotely
piloted without requiring a human on-board to fly. While this
term can be used accurately to describe drones in commercial
or civilian use cases, it is most commonly used in reference to
military applications.

Two types of UAVs l

Fixed Wing UAV Rotary Wing UAV

KYUNG HEE @
UNIVER SITY
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The Differences Between UAY, UAS, and Autonomous Drones

Conceptual Rendering of Unmanned Aircraft System

What is an Unmanned Aircraft
Systems (UAS)?

“Unmanned aircraft systems” refers to
the entire system required for
advanced drone operations including
the aircraft, ground control station,
and communications system. UAS can
either require a human pilot on the
ground or be fully autonomous
without need for a human. Any UAS
includes a UAV as the aircraft
component of the system.

“fs y KYUNG HEE https://itlaw.fandom.com/wiki/Unmanned_aircraft_system @
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The Differences Between UAY, UAS, and Autonomous Drones

What is an Autonomous Drone?

The term “autonomous drone” describes a UAV that can operate
without any human intervention. In other words, it can take off,
carry out missions, and land completely autonomously.

An “autonomous drone” is a type of UAV, but a UAV is not
necessarily an “autonomous drone”. In the case of autonomous
drones, communications management software coordinates
missions and pilots the aircraft instead of a human. Because an
“autonomous drone” is piloted by software instead of a human,
an autonomous drone is part of a UAS by definition, as it requires
a complete system to operate.

PERCEPTO BaSE CLOUD MANACEMENT SYSTEM

4 s, KYUNG HEE https://percepto.co/what-are-the-differences-between-uav-uas-and-autonomous-drones/ (N:
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Automation

The use or introduction of automatic
equipment in a manufacturing or

other process or facility.

How automated a drone is always
comes down to how much automatic
equipment is involved and how
much  manual intervention it
requires. An automated drone
follows orders about destination and
route but cannot make decisions.

Types of UAVs: Automation VS Autonomy

Autonomy

Freedom from external control or
influence; independence.

How autonomous a drone is must
always be a measurement of how
independent the platform and its
workflow are. A truly autonomous
drone would decide on destination
and route as well as control in the
air.

https://dronelife.com/2019/03/11/droneii-tech-talk-unraveling-5-levels-of-drone-autonomy/
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Types of UAVs: Levels of Drone Autonomy

DRONE INDUSTRY INSIGHTS
THE 5 LEVELS OF DRONE AUTONOMY
Level Level Level Level Level Level
Autonomy
e 0 1 2 3 4 5
Human . . O
Involvement - - d
Machine : W# W e
Involvement b1
Degree of No Conditional High Full
Automation | Aytomation Automation Automation Automation [
Description | Drone control Pilot remains in || Pilot remains Pilot acts as Pilot is out of Drones will be
is 100% control. responsible for || fall-back the loop. abletouse Al | ©
manual. Diihe hias safe operation. system. Dione s Eggilrsft“o rr:tlgmas :
control of at Drone can take || Drone can backup g
: : autonomous
least one vital over heading, perform all systems so ——
function. altitude under functions that if one fails, 5 stemgs :
certain ‘given certain the platform y )
conditions. conditions’. will still be 3
operational.
Obstacle : -
DRONEIl.com
o Mar DRONE INDUSTRY INSIGHTS
https://dronelife.com/2019/03/11/droneii-tech-talk-unraveling-5-levels-of-drone-autonomy/ @
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Application methods Application methods Application methods Application methods Application methods

Types of UAVs: Levels of Autonomy & Drone Applications

Racing (recreation) Q Inspection & Maintenance q Mapping mﬁ Mapping mz] Photography & Filming S
Localisation & Detection @- Spraying & Seeding J_é Delivery .‘}
Photography & Filming 1 Measuring y Surveying E%
Protection & Security a Surveying B%

Monitoring l‘"
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Industrial Applications: Examples

Generic G/G AND A/G
Communication

Most generic application of our
solution is standard ATC functionality
where operators are able to access
to radio and telephone assets for
their generic air traffic control needs.

Operators are able to communicate;

« With airfield ATC units

+ Ground support crew

* Neighboring ATC/ACC Center

+ Command and Control Centers.

Radio Relay Over UAV

One of the most innovative
applications of our airborne radio
gateway is the ability to use the
UAV itself as a radio relay station.

This capability not only enables

the remote units in the field to

Ce icate among th lves, it
also allows operator assisted relay
functionality as well.

Bridging the communication gap
between geographically separated
units can play a game changing role
on the battle field.

Special Operations
Communication Support

Special operation communication
needs are more challenging by their
nature.

Most of the time, special operation
teams have to operate in

detached fashions but UAVs can
enable effective and real-time
communications between different
teams, as well as between teams
and Command Control Centers.

KYUNG HEE

Extended Radio Coverage Over
Datalink

Our airborne radio gateways, when
integrated into our VCS solution,
enables the operators to use radios
on the UAV for extended radio
coverage.

The most obvious advantage of

our solution is as it removes the
physical barriers of radio relay
between GCS and UAV and extends
radio coverage over the existing IP
datalinks.

When SATCOM facilities are used,
radio coverage becomes limitless.

URIVERSTTT http://www.uavvoice.com/Catalogue_Communication_System_for_UAV.pdf

Urban Warfare Support

Urban warfare has its own
challenges when it comes to
communication and without
proper communication capabilities,
missions can be under risk.

Our VCS solution, when coupled
with airborne radio capability,
can support even the most
challenging communication
environments. Since UAVs are
in "advantageous"” position due
their operational altitude, this
also enables them to bridge the
communication gap between
dismounted units.

Close Air/Ground Support
Some specific value-added use
cases for relay functionality of our
solution is the close unit (air or
ground) support for forward units.

Forward units frequently suffer
from communication gaps with
the command and control centers.
UAVS can play a very important
role in bridging the gap between
these units.

Natural Disaster Relief Support

Most public communication
channels are interrupted in the
event of a natural disaster.

UAVs can play a critical role in
terms of communication support in
the event of a natural disaster.

Radio access and radio relay
capabilities of our solution can
greatly enhance the effectiveness
of the UAVs to enable critical
communication facilities in the
field.

N
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Industrial Applications: Temporary Events

i On-Demand Aerial Base Station Deployment '. @




Industrial Applications: Smart Farming

* To access the vegetation health by using Remote Sensing (RS)
techniques and image analytics.

One of the most applied RS techniques is aerial monitoring,
b?&using images captured by satellites, manned aircrafts and / \
UAV

Satellites images are very expensive for a typical farmer,
usually their resolution and quality are not satisfactory and
practical due to weather conditions

* Aerial images captured by human-crewed aircrafts present a
better quality compared to the satellite images, but this
method is also very expensive

Small UAVs, also known are drones are characterized as a
more economical solution

. Panagiotis Radoglou-Grammatikis, Panagiotis Sarigiannidis, Thomas Lagka, loannis Moscholios, “ A compilation of
Yy KYUNG HEE UAV applications for precision agriculture, Computer Networks, 2020. (N
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Industrial Applications: Disaster Areas

* At the top level, UAVs
connect to the GPS satellite / \

by equipping receiver on T 4

board, which periodically R
provides the geolocation and @ N TN
time information e i R A

* This is critically important for O N L /

UAVs to accurately and T
safely accomplish the | B
disaster response tasks pA

Panagiotis Radoglou-Grammatikis, Panagiotis Sarigiannidis, Thomas Lagka, loannis Moscholios, “ A compilation of .
KYUNG HEE UAV applications for precision agriculture, Computer Networks, 2020. (&
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Industrial Applications: Vehicular Networks ( High Speed Trains)

wmmmee— Energy Harvesting
d—— Information Transmission

* UAV can also be used as a relay
for vehicles and high speed trains [t

Haitham S. Khallaf, and Murat Uysal, “UAV-Based FSO Communications for High Speed Train Backhauling”, @
Y \id 1)
KYUNGHEE  |EEE WCNC 2019. L
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Challenges to deploy UAVs in Communication System

* UAVs are energy constrained devices. Therefore, efficient energy
management is essential.

* Energy-aware trajectory optimization for the good channel quality

* Optimal communication and computation resource allocation to overcome
the onboard energy limitation while meeting the users' QoS requirements

* The dynamic deployment of a swarm of UAVs in an automatic manner to
mitigate interference and avoid collision

=
?8 » KYUNG HEE (&/
UNIVERSITY
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Applications of the Al/ML in UAV-based communications

Ao

Interference Management
Autonomous Path-Planning

UAV Swarm Intercommunication
Cooperative Multi-UAV Transmission

Channel Modeling

Autonomous
Path-Planning

N = W - 7
UAYV Swarm
Intercommunication

w Eavesdropping

o

Interference

Management A A

Observations

Prediction and Action
Selection

—g- Air-to-Air Link |
I —7Z- Air-to-Ground Link |
| —#~ Interference Link :

Cooperative Multi-UAV
Transmission

/e
b (G
A

é UAYV Detection

YUNG HEE  Bithas, P.S.; Michailidis, E.T.; Nomikos, N.; Vouyioukas, D.; Kanatas, A.G. A Survey on Machine-Learning Techniques for UAV-Based
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Applications of the Al/ML in UAV-based communications

PHY Layer
Communication
Aspects

Resource
Management

Position Security/Safety

\ e s UNIVERSITY . . NETWORKING
CO“““UnICatIOnS- SeIISOIS 2019, 19, 511 0 INIELLIGEN‘!ELAB
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Use Case 1: Ruin Theory for Energy-Efficient
Resource Allocation in UAV-assisted Cellular

Networks

* [ntroduction

* System Model

* Ruin Theory Preliminaries
* Problem Formulation

* Solution Approach

* Simulation Results
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UAV-Assisted Cellular Networks

® Communication features of UAV

* Line-of-site communication at high altitudes
* Dynamic placement at desired locations

* Flexibility and automation

* UAV Communication Challenges

* Energy efficiency

Trajectory design

Channel modelling

Deployment

Interference management

e Resource allocation
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System model of UAV-assisted cellular network

Solar Energy Harvesting

mMTC
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preprint arXiv:2006.00815, 2020.

UAV surplus Harvested Hovering
pov?r power power
Pu(T):Po+PT—E Pur| —pn
/ kK j
UAV initial Transmit
power power

Aunas Manzoor, C. S. Hong et al. “Ruin Theory for Energy-Efficient Resource Allocation in UAV-assisted Cellular Networks”. arXiv
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UAV Channel Model

Power S P e Channel gain
* SINR: o = Pjiftjn !
: Jk Z Por B+ o2 L, Noise
Interference | P IRIE
j'eI\{J}
- Pathloss

Channel gain:

hjk — 1071%#/10
Los pathloss A Lo ]
\ 5]_,05 L 920 1Ug ( TG uhf) n L‘Lgsg"//— 0o 10SSeS

Path-loss:

uk i
C

Non-Los pathloss

. Non-Los Losses

L NLosk

Ard. f )

C
PrL LOS PrNLOSONLOS Probability of non-Los

ONLDS = 20 log (
Total pathloss \
5-11,@;

Environmental constants
1
Lo
Probability of LoS: N : 1 g ?
Y alexp[l tan~! =) — a

e

Association Bandwidth SNR
N

Data rate:

Rk =|xjpwiklog (1 + [k

KYUNG HEE Aunas Manzoor, C. S. Hong et al. “Ruin Theory for Energy-Efficient Resource Allocation in UAV-assisted Cellular Networks”. |EEE @
Transactions on Communications, Vol. 69, No.6 pp. 3943-3954, June 2021 INTELLIGENCE LAB



5G-NR coexistence frame structure

eMBB TTI
o
[ N
Y~
\\\
~J_URrRLLC
/> Arrival
e __fo e Djk represents the amount of data which
® can be communicated from BS j to the
mMTC Multiplexed Frame eMBB user k during time T
URLLC Association | | €eMBB Rate
. e Z R , TTIl: Transmission Time Interval
K ey

t( v KYUNG HEE Aunas Manzoor, C. S. Hong et al. “Ruin Theory for Energy-Efficient Resource Allocation in UAV-assisted Cellular Networks”. |[EEE (N/
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Ruin Theory Preliminaries

* Ruin theory expresses an insurer’s vulnerability of bankruptcy
* Surplus process represents the insurer’s capital at a time instant, t, and comprises two
opposing cash flows

* The insurance premiums
e Random claims Premium (harvesting power)

Initial power )
Random claims
\ / (power cosumed by transmitting)

pu(T) = pol+ pT|—| S

* Definition of Probability of ruin:

V(po, T) = Prlp.(s) <0, for some s as 0 < s < 7]

KYUNG HEE Aunas Manzoor, C. S. Hong et al. “Ruin Theory for Energy-Efficient Resource Allocation in UAV-assisted Cellular Networks”. |EEE (&:
' o Transactions on Communications, Vol. 69, No.6 pp. 3943-3954, June 2021 INTELLIGENCE LAB



Ruin-based: Problem Formulation

Total transmission and processing cost minimization problem.

Data rate — Probability of ruin
max gZZDjk (Zjk, Pjk) —EZ%(PDJ)-, (11)

JeT ke ueld

Y P <p;, Vje{{0}uS}, (11a) | BS transmission power budget
kek
Pr(y,0 >¢) > (1—¢), VjeJT,Vk €Ky, (11b) | URLLC reliability

Z Ty = Ay VJET, (11c) | URLLC latency

K ek Ensuring the immediate scheduling
Y zp=1, VkeKk (11d) | Unique user association

JET
0 <P <pmax, Vi€T,keK, (11e)

Variable bounds
zr € {0,1}, Vje T, kek. (11f)
KYUNG HEE Aunas Manzoor, C. S. Hong et al. “Ruin Theory for Energy-Efficient Resource Allocation in UAV-assisted Cellular Networks”. |EEE (&:
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URLLC Allocation

* URLLC Association: At time slot 1, )\u number of URLLC users are scheduled in the
same slot. A user kK’ is associated with the BS | which delivers best SINR

* URLLC Power allocation: Optimal power allocation to meet certain SINR threshold
which ensures the URLLC reliability

br (ﬁ"rj*’f" = C) can be expressed as CDF F*}.-.;Cf (C)

SINR | ['g\NR Threshold | | Reliability

Pr (“}’j,rf Z@ > ([ =€) mm | I, (C) 2 (1 — €)| ey | ¢ > “7:'?’_-:;’(1 — €)

jk
* Optimal solution lies on boundary Viw = ¢
the inverse CDF of yjk ,
* Compute optimal power .7‘}._1, (1 —€)(1+1)
P* ! — ok
y _ijhjk gk hjk
gk — SS Punh, >
ikNjre + 0
y . _ . . 2
7'eI\{5} [ = ZJIGJ\{J} Pj’l{:h;)’k: T Wir0

By KYUNG HEE (N
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eMBB User Association

* Association problem: The finite-time probability of ruin
/ Algorithm 1 User Association Algorithm

/ Input: J, K, Pj;, p;
max ¢ Z Z Dy (g, Pjx) — € Z Uu(post).

initialize: 27, =0
o7 hek =y Step 1:
Compute 1, (py, t) from (10)

ZIjk: . ‘?’kEﬁC, -

JET
i €40,1}, Vjie T, keK.

AN A S e

elect single BS 7 with In'fi?c Nik
JEJ

. end for
9: Step 2:
10: for =1 to .J do
11: Initialize P = p;
12; while P > () do
Nk -= ?‘(1 - wu(ﬂi): f))"‘/jk 13: Find MaX 7

/ 14: Update 27, = 1, and P = P — P

15: Remove maX vk from SINR vector ;i
€

Control factor 16: end while
17: end for
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eMBB Power Allocation

The achievable rate for the set of the associated eMBB users

* Power Allocation Problem:

max Z Z R:,k‘,/

1€T keK.

LY Pu<pi- ) Py, Vie{{0}us},
keke k' eky

Oﬁpjkgpmax: VjEJ;kEKE*

vy -
KYUNG HEE

=)

Aunas Manzoor, C. S. Hong et al. “Ruin Theory for Energy-Efficient Resource Allocation in UAV-assisted Cellular Networks”. |EEE
Transactions on Communications, Vol. 69, No.6 pp. 3943-3954, June 2021

e Standard Form of Power Allocation Problem:

min Z Z Wik log (1 + i)
JET ke,
st. Y Pp=pi— > P, VieJ,
kel k' ek,
jkg(], VjEjjkE)(:E
ijkgpmax: vjEJ:keKz.&rf

-
1)
A B
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eMBB Power Allocation

Lagrangian Function:

When the KKT conditions are satisfied, the optimal solution of the Lagrangian function is obtained

* KKT Conditions

LIP,A p,v)=

JET

+3 N

Z Z T Wik log (1 + ;&)

JET keKe

Z})jk_pj_l_ Z JED;I»L-’

keke

+ZZH;&: a+ZZ Vit (Pjk — Pmax)-

E ek,

=

VL(P) =

+vy, =0, Vie J, kek,,

wirPir =0, VjeJ. kelk,,

B fl:jkwjkﬁjk N —
1+ 0Py 0 Mot

ij>0, — ﬂjk:O

— Pmax)s V€T k€K,

_pmax) > 0, — .Ujk — 0

JET ke, JET ke,
- Vik(Pik
0., = J% _
J'eT\{0.5}

Bjk is the channel gain for the user k from BS j

\ ik

Lagrangian multiplier for power budget constraint of BS

vi, >0, VieJ. kelk,,
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eMBB Power Allocation

T Wik m
‘U’E(P)—— Ik - / +/\j_ﬁ,ik
1+ Pyl + 0
—{_Ifjk: ; VJ ij‘E)’Ce;
R
0. = —2
Tk I+ o2’
751, Wik0jk
VL(P) = =7 +Aj = ik

(L+0xPjr)
+vir =0, VjeJ, kel

" KYUNG HEE @
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Systematic Diagram of Proposed Algorithm

[ URLLC association J

and power allocation

A

[ Compute oy, (pn, 7) ]

[ eMBE association

-

[ eMBB power allocation ]
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Performance Evaluation (1)

J ml == UAV-assisted network
10 I»‘ =l Terrestrial network
?
— I
-§ 8 - ’1 "..5‘ \
1
% 6 iff N ’0
Eel 4 T
5 t N
7} 1" .~
2 I. I .‘I.-.
2l 44
illl
0 25 50 75 100 125 150 175 200

Number of cellular users in the network

I SINR
s Ruin

254.0

169.0

Flight time Served users

Network rate vs. number of cellular users in the network.

UNIVERSITY

Comparison of ruin and SINR-based approach for UAV flight
time and number of served users.
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Performance Evaluation (2)
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Summary

* The UAV-assisted cellular networks to enhance the cellular network capacity is
studied.

We have formulated a joint optimization problem for the user association and power
allocation for the 5G NR traffic classifications.

First, the probability of ruin is used to estimate the possible number of cellular users
to be associated with each UAV.

Then we have iteratively solved the power allocation problem.

Simulation results have demonstrated the effectiveness of the proposed ruin-based
energy-efficiency scheme.

Py S.M. Ahsan Kazmi, Latif U. Khan, Nguyen H. Tran, Choong Seon Hong, "Network Slicing for 5G and Beyond Networks," ISBN 978- (N
Y ENGEEE 3.030-16169-9, Springer il
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Use Case 2: Energy-Efficient Resource Management in
UAV-Assisted Mobile Edge Computing

* [ntroduction

* System Model

* Problem Formulation
* Solution Approach

* Simulation Results
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Introduction

* Recently, unmanned aerial vehicles (UAVs) have been widely deployed to extend
the coverage area of the cellular networks and to provide network services to mobile
devices where cellular infrastructures are not deployed yet

* Moreover, by implementing a MEC-enabled UAY, a network operator can provide
remote and on-demand MEC services to users that are out of infrastructure coverage
area

* However, there are several challenges such as energy minimization of both UAV and
mobile users, optimal task offloading, resource allocation, and the UAV’s trajectory
while satisfying the mobile devices’ latency requirement

Yan Kyaw Tun, Yu Min Park, Nguyen H.Tran, Walid Saad, Shashi Raj Pandey, and Choong Seon Hong,

- “Energy-Efficient Resource Management in UAV-Assisted Mobile Edge Computing”, IEEE Communication Letters, Oct 2020. :
LY <rung HeE ®

NETWORKING
INTELLIGENCE LAB




System Model

"~ UAV assisted MEC
—1— Task Assignment
w Mobile device

Fig. 1: Illustration of our system model.
* A set of mobile devices : Iy
* Location of device ‘v’ : o0, = [Tu.yu]T
* UAV’s total flight period: T
* UAV is flying at fixed altitude : H
e Location of UAV at time ‘' : c(t) = [z(t),y(t),H|F,0 <t < T
* Discretize UAV flight period into N time slots
* UAV needs to return initial location at the end of flight period : ¢(1) = ¢(N)

Yan Kyaw Tun, Yu Min Park, Nguyen H.Tran, Walid Saad, Shashi Raj Pandey, and Choong Seon Hong,
.{3? KYUNG HEE “Energy-Efficient Resource Management in UAV-Assisted Mobile Edge Computing”, IEEE Communication Letters, (K(\
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Communication Model

Speed constraint of UAV at time slot ‘n’ :

lle(n +1) — e(n)]
L

<V.vneN.

T the length of each time slot
The energy consumption of UAV flight at time slot ‘n’:

E"(n) = k‘(”C(n +1) - c(n))||) VYneN
L k) )
k= 0.5M- UAV weight

The distance between UAV and device ‘U’ at time slot ‘n’:

du(n) = \/H? + ||le(n) — 0,]|2, YuelU,VneN.

The achievable data rate of device ‘U’ at time slot ‘n’:

| 2
R,(n) :lm:u (n)Blog, (1 _'_/Pu(ﬁ)liu\(ﬂﬂ ) ,Yu, Vn,
—~ / < «

&%y KYUNG HEE ) : : i S
wwse - Association Bandwidth Transmit power of device Channel gain o
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Local Computing Model

* Computation task of device ‘v’ at time slot ‘n’ can be denoted as tuple:

{Bu,ay(n), Tu(n)}.

e

Required CPU cycles to compute 1-bit of Input data size Tolerable amount of time to complete task
input data
* Fraction of task executed remotely at UAV and device ‘u’: ly(n) and (ay,(n)—1,(n))

* Local Computation Latency /delay of device ‘u':

tt (n) = Pulau(n) — L (n))j YuelU,Vn e N,

fi
* Local energy consumption of device ‘v’ at time slot ‘n’:

El(n) = w(f))?Bu(au(n) — lu(n)), Yu cU,¥n e N,
A constant which depends on the chip architecture of (N(\

—27
&Py KYUNG HEE w =09 x10 D . . )
UNIVERSITY the mobile device NETwoRKiNG
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UAV-Aided Edge Computing Model

* Uplink transmission time of device ‘v’ when assigning fraction of task [, (1) to UAV as time slot ‘n’

t'P(n) = ;"'(E:B) Yu e U,Yn e N.

* The uplink energy consumption:

E'(n) = pu(ﬁ)g:;gﬂ)j Yu e U,¥n € N.

* The computation latency at UAV:

Buly(n)
f& ).

ts"P(n) = Yu e U,Vn e N,

T~ Computation capacity of UAV allocated to device ‘n’
* The energy consumed by the UAV for executing the fraction of task of device ‘v’

E™(n) = q(f)?Bulu(n), YneN, | lg =5 x 10727

Yan Kyaw Tun, Yu Min Park, Nguyen H.Tran, Walid Saad, Shashi Raj Pandey, and Choong Seon Hong,

.k_'_/‘.

?.? KYUNG HEE “Energy-Efficient Resource Management in UAV-Assisted Mobile Edge Computing”, IEEE Communication Letters, (N\
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Problem Formulation

* To the best of our knowledge, our work is the first to consider the energy minimization of both UAV and mobile devices
by jointly optimizing the UAV’s trajectory, communication and computation resource allocation, and task assignment. We

can formally post this problem as follows:
N

N U
min ( Z Z E!(n) + E.ﬂp(n}) + Z E"(n)

cl.ox.p,
Leep. f n=1u=1 n=1

N U
+3 > EX(n) (15)

n=1wu=1

st 1P (n) + £ (n) < Tu(n), Yu € U,Vn e N,

(15a) Latency constraint of task of each device at each time slot
tt(n) < T,(n),YueU,¥n e N, (15b)
l (n) < ay(n),YVu e U,¥n € N, (15¢) Data size constraint of task of each device
Z f&(n) < f€(n),¥n e N, (15d) Computation capacity constraint of UAV
u=1
Uf Pu(n) < pu™(n),Vn €N, Vu €U, (15€) Power constraint of each device
z_:l au(n) £1L,0< au(n) < L,VuelU,VneN, Fraction of bandwidth allocated to each device

(15f)
le(n + 12) —cml <V.vneN, (15g) Speed constraint of UAV
c(1) = e(N), (15h) Location of UAV at initial and final flight

Yan Kyaw Tun, Yu Min Park, Nguyen H.Tran, Walid Saad, Shashi Raj Pandey, and Choong Seon Hong, ~
KYUNG HEE “Energy-Efficient Resource Management in UAV-Assisted Mobile Edge Computing”, IEEE Communication Letters, Oct (&/
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Solution Approach

* Our proposed problem is MINLP, therefore, it is an NP-hard problem. Therefore, we use Block
Successive Upper-bound Minimization (BSUM) method to solve the problem. Then, we rewrite the above
mentioned problem as follow:

min c.l. o, p,
ceClel axEry, O( 3 by , P f)

peEP.fEF
: r iy Al com
where O(c,l, o, p, f) = (Z;Ll o1 EL(n) +E.;P(n)) || @ Ha 82 m) + 2™ m) S Tuln), 3 au(n) 1,0 < auln)
u=1
Sono1 E™(n) + 32,0, 304, ES¢(n). Furthermore, <1,Yu€lU,¥ne N},
C 2fe: 19 (n) + £ (n) < T, (n), 1S D = @Il _ 1| P E{p: £iP(n) + 5™ (n) < Tu(n),0 < pu(n) < pii™(n), ¥n,
N L Yu € U}, U

vueld,vn e N, FA{f £2(n) + 1™ (n) < Tu(n), Y £€(n) < £(n),Ya.

LE2{l:tP(n) +t°(n) < Tu(n),th(n) < Tu(n),l.(n) < u=1
ay(n),Vu € U,Vn € N'}, Vn € N},

* The proximal upper-bound function:

Oi(ci; Ckz Ek‘! akﬁpka fk) - O(CE* E& E-: &1f]: jz) +

I (ei —€) I«

&
2

Penalty term

MINLP: Mixed Integer NonLinear Programming

Yan Kyaw Tun, Yu Min Park, Nguyen H.Tran, Walid Saad, Shashi Raj Pandey, and Choong Seon Hong, ,_
KYUNG HEE “Energy-Efficient Resource Management in UAV-Assisted Mobile Edge Computing”, IEEE Communication Letters, Oct (K_(:
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Block Successive Upper-bound Minimization (BSUM)

r
f(X,-, X_ /')

- —————

v
v

r X; r X;
X ! X ! X; X;

(a) (b) (c)

[FIG3] The upper-bound minimization step of the BSUM method is shown. Here we assume that coordinate i is updated at iteration
r+ 1. ltis clear from the figure that after solving the BSUM subproblem (3), f(x/™", x";) < f(xi, x",), that is, the objective function is
strictly decreased.

%HEﬁIHEEIearning and signal processing." IEEE Signal Processing Magazine 33.1 (2015): 57-77. NET;;:'NG
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Solution Approach

* The solution at each iteration can be updated by solving the following sub-problems:

) € min O, (e e),19, ), p¥), f“"']), (18)
CT-E
!*Ek-i-l) = ml]g@ ( {k+1] {kjﬂp{k}: f{k)) (19)
L;e
D:EH' ) € min O; (ar:!t:1 ok, ekt k41 kj,f(k)), (20)
o e
p"*V € min O; (Pa p*), F ﬂ‘“*”;ﬂ“"*”;.ﬂ“);
p;,eP
(21)
f£k+ ) 11:111 ( f““ (k+1) ![k+1}1a[k+1]=p(k+l))
eF
(22)

=

Algorithm 1 BSUM Algorithm for an Energy-Efficient Re-
source Management in UAV-Assisted Mobile Edge Computing

1: Imitialization: Set £ = 0, ¢; > 0, and find initial feasible

o

9:

solutions (¢(@,1® o p©) £).
repeat
Choose index set Z*;
Let c(k“) o minC cc O; (Cz c(k),l(k), a® pk) f(k));
Set ¢ ("“— ck, Vj ¢ IF;

Find I(HI) (LH), pgk“), and fgk“) by solving

(19), (20) (21), and (22);
k=kFk+1;

until || = o‘“l

| <&
Then, set (c; (k+1) D Q(RHD) kD) (i)

desired solutlon

) as the

Yan Kyaw Tun, Yu Min Park, Nguyen H.Tran, Walid Saad, Shashi Raj Pandey, and Choong Seon Hong,
“Energy-Efficient Resource Management in UAV-Assisted Mobile Edge Computing”, IEEE Communication Letters, Oct

KYuNg e 2020
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Simulation Results
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Fig. 2: Trajectories of UAV under different flight period 7.

== Trajectory of UAV at T=40s
—=- Trajectory of UAV at T=15s
e UE
'S t=20s
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!
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x(m)

t=35s

Total energy consumption (J)

B Proposed solution

B BCD based solution

B Equal resource allocation
Remote task execution

UAV

(a)

loT devices

*BCD: Block Coordinate Descent

3(a) shows energy consumption of UAV and IoT devices.

Yan Kyaw Tun, Yu Min Park, Nguyen H.Tran, Walid Saad, Shashi Raj Pandey, and Choong Seon Hong,
“Energy-Efficient Resource Management in UAV-Assisted Mobile Edge Computing”, IEEE Communication Letters, Oct
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Simulation Results
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Fig. 4. Energy consumption under different number of
mobile devices.

(c)

3(c) shows oftloaded data size of the task under different tolerable latency.
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In this work, we have studied the problem of energy-efficient UAV trajectory optimization,
resource allocation, and task offloading in the UAV-assisted mobile edge computing system.

Summary

* We have shown that the proposed problem exhibit a non-convex structure, and thus, it is
challenging to solve by using traditional convex optimization techniques.

* To address this issue, we have introduced the BSUM algorithm, which is a powerful tool for
non-convex.

* Finally, we presented the numerical results to show the efficiency of the proposed solution
approach where it was clear that our proposed algorithm outperforms other baseline
algorithms.

Yan Kyaw Tun, Yu Min Park, Nguyen H.Tran, Walid Saad, Shashi Raj Pandey, and Choong Seon Hong,
“Energy-Efficient Resource Management in UAV-Assisted Mobile Edge Computing”, IEEE Communication Letters, Oct .
x(y KYUNG HEE  2020. (N )
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Use Case 3: Blue Data Computation Maximization in 6G

Space-Air-Sea Non-Terrestrial Networks

* [ntroduction

* System Model

* Problem Formulation
* Solution Approach

* Simulation Results
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Aerial and Space Networking: 6G Space-Air-Sea Non-Terrestrial Networks

System model for space-air-sea (SAS) networking

" The seamless and reliable demand for communication is investigated to execute computational tasks in maritime

wireless networks

" Proposing an LEO-MEC satellite and UAV-MEC-enabled 6G SAS-NTN architecture by considering both variants of

maritime users, i.e., high and low communication capabilities
" The objective is to maximize sum rate of the space-air-sea network (i.e., maritime network)

LEO-MEC » @

(]
Q
g . : :
e e .
- '1!1(1( 4 A AR Maritime User
A ' N Streaming
Computational .-~ ", / ‘Backhaul Dashboards
= Task -7 S Y.
; . ’ ’ ]
e ’f,fi_ "' ”’ Xy AV \\ — .._@
Ph ’ yh ':’ "r ,":‘:" ’l': N ~ i ‘@. .
e - ,’J ‘; -~ 'i' “/, r,'l .‘.. “ —
1 g l’.r o J _ (([ ]):\,- “— == ‘f Web and
'a’ . i __-‘ s A CR ( Satellite-Mobile
T “' e ;.- '..: & Applications
# ¥ 1
5 o s - .| =
@ 2 ]
y = EG
Y LUE . () E—
u——/ - — I_“ _A[( 1 MaJ'iﬁJIle
Shipping Lane CBS Internet-of-
Things

HUE: High-Gain UE LUE: Low-Gain UE EG: Earth Gateway Coast Use Cases
CR: Coverage Radius (CBS: Coastline Base Station

Y v KYUNG HEE S S- Hassan, Y. K. Tun, W. Saad, Z. Han and C. S. Hong, "Blue Data Computation Maximization in 6G Space-Air-Sea Non-Terrestrial Networks," 2021 |EEE m\/
8: UNIVERSITY Global Communications Conference (GLOBECOM), 2021. NETWORKING
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Aerial and Space Networking: 6G Space-Air-Sea Non-Terrestrial Networks

Summary of investigation

" Maritime network traffic has grown significantly in
recent years due to sea transportation [1].

= Non-terrestrial networks (NTN), encompassing
space and air platforms, are a key component of
the upcoming sixth-generation (6G) cellular
networks.

= A joint task offloading and time allocation problem
for weighted sum-rate maximization is formulated
as a mixed-integer non-linear programming

(MINLP).

= A solution based on the Bender and primal
decomposition is proposed.

s F

\ (G} The global mantime sateliite communication market size Is expected to
R grow fromUSD 2.3 billion in 2020 to USD 3.2 billion by 2025, at a CAGR of
1-1% 7.1% during the forecast period.

The market growth in APACcan
be attributed to the large
number of manufacturing = P
industries. which creates gﬂ Escaleting need of enriched data 7| Acquisitions and product launches
. o | communication ¥ improve operation 2 would offer lucrative opportunities
rtunity for 1ant = = > =
o'p_po un t'vd ?I merc; i’a‘ Q¢  efficiency, omboard security & =|  ror market playersinthe nexts
shipping and thus creates R surveiliance, and employee/ passenger years
demand for secure satellite- welfare in maritime industry is driving the i
based communication market
The market is reflecting o rapid shift from MSS Asia Pacific is expected to hold the
§) 1 VSAT opersting specificallyin C-Band, Ka- &4, highest market share during the
I~ Band, and KuBend. This technology shiftis forecast period. The region is the
ﬂﬂn otfributed %o bandwidth ond costedventages highest contributor of global
EVSAT offers : 24
that VSAT offers to merine user: maritime trade
< T >

UAV-MEC —>LEO|\HUE ;—>LEO-MEC|HUE ;/~—>LEO-MEC|LEO-MEC—HUE;|LEO-MEC—HUE 4

Backhaul Task Offload Task Offload Task Download Task Download
I | I I
I [ l
Ty / 4 ;T T4T =0 =~/]

Example of LEO-MEC time resource allocation

S. S. Hassan, Y. K. Tun, W. Saad, Z. Han and C. S. Hong, "Blue Data Computation Maximization in 6G Space-Air-Sea Non-Terrestrial Networks," 2021
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IEEE Global Communications Conference (GLOBECOM), 2021.
[1] Source: https://www.marketsandmarkets.com/Market-Reports/maritime-satellite-communication-market-113822978.html
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Aerial and Space Networking: 6G Space-Air-Sea Non-Terrestrial Networks

" The weighted communication sum rate of the space-air-sea network (i.e., maritime network)

M,
R(g.y,ivm) 23 zi((1 = y) I 4+ y, REEC) 4 RUAV, (D)
i=1

Weight Parameter for HUE i depends Offloading decision variable, decide whether

upon their channel condition compute locally or transmit to LEO-MEC

" The objective is to maximize the weighted sum rate for the considered space-air-sea network
" The formulated mixed-integer non-linear optimization problem is as follows:

Channel Gain Input Decision variables that need to optimize
. — :
R*(g) :‘m@y:mm)? (8a)
L.Tu.Ti
M,
Offloading decision /5_[. T, + Z . <T. (8h) Total time duration constraint
Time duration for UAV | =1 Each allocated time duration should be

Tu = 07 Ti = U, Vi € .,Mh: [8;:_} greater than zero

Time duration for HUE

U; € {U, 1}, Vi € Mh. (8d) | Whether HUE i will transmit its offloading
task to the LEO-MEC or compute locally

KYUNG HEE S- S. Hassan, Y. K. Tun, W. Saad, Z. Han and C. S. Hong, "Blue Data Computation Maximization in 6G Space-Air-Sea Non-Terrestrial @:
: VNIVERSITY - Networks," 2021 IEEE Global Communications Conference (GLOBECOM), 2021. NETWORKING
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Aerial and Space Networking: 6G Space-Air-Sea Non-Terrestrial Networks

" The weighted communication sum rate of the space-air-sea network (i.e., maritime network)

M,
R(g.y,ivm) 23 zi((1 = y) I 4+ y, REEC) 4 RUAV, (D)
i=1

Weight Parameter for HUE i depends Offloading decision variable, decide whether

upon their channel condition compute locally or transmit to LEO-MEC

" The objective is to maximize the weighted sum rate for the considered space-air-sea network
" The formulated mixed-integer non-linear optimization problem is as follows:

Channel Gain Input Decision variables that need to optimize
. — :
R*(g) :‘m@y:mm)? (8a)
L.Tu.Ti
M,
Offloading decision /5_[. T, + Z . <T. (8h) Total time duration constraint
Time duration for UAV | =1 Each allocated time duration should be

Tu = 07 Ti = U, Vi € .,Mh: [8;:_} greater than zero

Time duration for HUE

U; € {U, 1}, Vi € Mh. (8d) | Whether HUE i will transmit its offloading
task to the LEO-MEC or compute locally

KYUNG HEE S- S. Hassan, Y. K. Tun, W. Saad, Z. Han and C. S. Hong, "Blue Data Computation Maximization in 6G Space-Air-Sea Non-Terrestrial @:
: VNIVERSITY - Networks," 2021 IEEE Global Communications Conference (GLOBECOM), 2021. NETWORKING
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Aerial and Space Networking: 6G Space-Air-Sea Non-Terrestrial Networks

Proposed Algorithms

Bender decomposition is used to solve MINLP by Primal Decomposition algorithm for handling
decomposing into sub and master problem coupling constraint
Algorithm 1 Data Computation Maximization and Task Deci- Algorithm 2 Optimal-Time Resource Allocation by Primal
5 | sions by Bender Decomposition _» Minimum objective value (data rate) Decomposition
2| 1: Initialize: loop counter j = 1,[F9o%Y ¢ L Initialize: ¢
O| 2 whilelR), — R, > ¢|do ; : o 2 repeal
o /‘j/ﬂ: UB . LB Fixed offloading decision (dual values) 3 Solve the primal-subproblems in parallel
% “' u F\'m cm _ i i \I _ 5 4: Solve problem (17) and acquire the optimal fime-
o & Compute optimal 7,7, 7.~ and |x;| by|Algorithm 2 > resource allocation 77 for associated HUEs and
g 5:  Convergence Analysis | dual variable associated with constraint (17¢).
S| ¢ Compute the lower (R ) and|upper (R{;) bounds 5: Solve problem (18) and acquire the optimal time-
by (10) and (11) resource allocation 7, for UAV-MEC and dual
7. Master Problem \‘( Upper Bound R}, = R(§, 7. 7). variable associated with constraint (18c).
8: Step 1: Update the loop counter j =7+ 1 6: Upda;e thge tl[I}(Ef/\l‘t‘:SDl;rC)e allocation auxiliary variable:
0: Step 2: Add new cut to the Master problem (13) : = —ClA2 — A1)
7: until convergence . .
10: Step 3: Solve the updated master problem After convergence, optimal time
11: Step 4: Compute the optimal value of |y;” |and |07 values are obtained
12: end while
Optimal offloading decisio;_‘ Data rate objective value in Master Problem (with lower bound Rij;)
‘ S. S. Hassan, Y. K. Tun, W. Saad, Z. Han and C. S. Hong, "Blue Data Computation Maximization in 6G Space-Air-Sea Non-Terrestrial N
KYUNG HEE  Networks," 2021 IEEE Global Communications Conference (GLOBECOM), 2021. LA 5
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Aerial and Space Networking: 6G Space-Air-Sea Non-Terrestrial Networks

v’ Simulation Parameters and Network topology consisting of LEO, UAV, HUEs and LUEs

Simulation Parameters Network topology
Parameters Values
Transmit Power P =33 dBm & L0
Noise Power o = — 104 dB & UV
Carrier Frequency f =30 GHz : :::
System Bandwidth B =20 MHz 3000 *
Communication Packet Overhead p=1.1 |
Processor Cycles for one bit x = 100 o
HUE Antenna Gain G; = 25 dBi y o
UAV Antenna Gain G, = 25 dBi - P
Satellite Antenna Gain (s = 30 dBi T
Standard deviation w = 0.1
reference distance pathloss 7 = 46.4
pathloss exponent v =2 S g
Rician fading parameter Bi, By = 1.59 Yeaxis 200 190 o O o0 =

v" For our simulations, we consider the HUEs in SAS-NTN to be uniformly distributed in 500 nautical mile square area (NM?)

S. S. Hassan, Y. K. Tun, W. Saad, Z. Han and C. S. Hong, "Blue Data Computation Maximization in 6G Space-Air-Sea Non-Terrestrial -
KYUNG HEE Networks," 2021 IEEE Global Communications Conference (GLOBECOM), 2021. (N( )
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v’ Experimental Results

Convergence of Bender decomposition

algorithm
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Weighted sum-rate (bits/s) vs HUEs

le9

Em HUE Sumrate
EEn uAvY Backhaul

o.00 -

B0 100

MNumber of HUEs

Comparison of proposed
algorithm with other schemes

led

2.5 4 - Proposed (10 MHz)}
-BF Scheme 1 (10 MHz)
-A~ Scheme 2 (10 MHz)
—&— Proposed (20 MHz)
2.0 - B~ Scheme 1 (20 MHz)
=&= Scheme 2 (20 MHz)

Weighted Sum Computation & Communication Rate

L T i i 1 v ' 1 1
10 20 30 40 50 G0 70 80 o0 100
Number of HUEs

v' Scheme 1: This scheme is considered as optimal results, which are computed by use of a standard optimization solver.

v' Scheme 2: This scheme is regarded as a random task decision and time allocation to each HUE.

S. S. Hassan, Y. K. Tun, W. Saad, Z. Han and C. S. Hong, "Blue Data Computation Maximization in 6G Space-Air-Sea Non-Terrestrial
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Various Machine Learning Approaches

* Reinforcement Learning (i.e., Q-Learning) >| A |
"| Agent
gy

state | |reward action

3, R, : i A,

t+1

. . | Environment ]*—
* Deep Learning -

* Artificial Neural Networks (ANN)

.

L]

* Deep Reinforcement Learning (DRL) ;\1,
—— Policy ———
(i.e., Deep Q-Learning) Actor
*  Actor-Critic Learning
D
Critic error
V Ifxe
d — -
state f— Function action
/
reward

—‘ Environment ‘<~

-
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Use Case 4: Data Freshness and Energy-Efficient UAV
Navigation Optimization: A Deep Reinforcement
Learning Approach

* [ntroduction

* System Model

* Problem Formulation
* Solution Approach

* Simulation Results
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Introduction

¢ In this work, we design a navigation policy for multiple UAVs where mobile base stations
(BSs) are deployed to improve the data freshness and connectivity to the loT devices.

¢ We formulate an energy-efficient trajectory optimization problem in which the objective is
to maximize the energy efficiency by optimizing the UAV-BS trajectory policy

*** We also incorporate different contextual information such as energy and age of information
(Aol) constraints to ensures the data freshness at the ground BS.

*»* Second, we propose an agile deep reinforcement learning with experience replay model to
solve the formulated problem concerning the contextual constraints for the UAV-BS navigation.

Sarder Fakhrul Abedin, Md. Shirajum Munir, Nguyen H. Tran, Zhu Han, and Choong Seon Hong, “Data Freshness and Energy-Efficient

5 KYUNG HEE UAV Navigation Optimization: A Deep Reinforcement Learning Approach”, IEEE Transactions on IntelligentTransportation System, |EEE (Nj
l( v UNIVERSITY Transactions on Intelligent Transportation Systems, Vol.22, No.9, pp. 5994-6006, Sep. 2021 S
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System Model
s o) (D e "

~ Baoss
N— ’ N ‘ Ba,pille
| (A
uy(zy,y1. ) . EJ ‘, ' A, (8
o’ \ | o s

H t ta 3 tyts tg t7 18

Information generation and

update time % Set of Trajectory points: P — { 1,2, 1P}

'-

P%(l‘s ys@

@ = (p1 = p3) (p3 ) (ps — pa) = b ‘ I“_]_- ’:’ Set Of UAV'BSS: u — {1? 2’ . e s .U}

_—Q .‘:‘ D 4@ I

m(z, y\/ Api = p2) \&M@ 'Ps -ESaij@/ 0:0 Set of loT devices: I _ {1‘2 . I}
(p2 =+ p5) ) = j

------------------------------------------------------------------------------------------------------------------------------------------------------------
.

: . . UAV-BS Communication ———— UAV to BS-MEC mmWave = = '

: Trajectory Waypoint > Py

: @ Trajectory Waypoint . Coudinge Back-haul @' = |oT Devices
Trajectory Waypoint ______ , loTto UAV Wireless _____ | o ference A Ground Base Station with Edge W UAV- BS
Links Uplink Server

Fig. 1: System Model for Heterogeneous Unmanned Aerial
Networks with Edge Computing

Sarder Fakhrul Abedin, Md. Shirajum Munir, Nguyen H. Tran, Zhu Han, and Choong Seon Hong, “Data Freshness and Energy-Efficient
KYUNG HEE UAV Navigation Optimization: A Deep Reinforcement Learning Approach”, IEEE Transactions on IntelligentTransportation System, |EEE (N\
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Channel Model

* Probability of LoS and NLoS between UAV-BS and loT device:

1
l+aexp(—a(220,—a))’

1— 1 ], NLoS channel.

l+aexp(—&(+52 0, —a))

LoS channel,

Elevq'rion Angle

/Distance between UAV and UE
pu _ { 20 log( 4ﬂf:f?ﬁ’)+/fﬂLoS channel,

lllp o el —
20 log( =B 4 E.\NJ{S channel.
\

* Path Loss in decibel (dB):

Attenuation factors

* Signal to Interference pulse noise ratio

o Interference
- 2hpyq
i,p(t) _ T 0 /
Received signal power at UAV- Tip\t ¢ +g2 V4 G
BS: oP I, = Zp’E'P D wreu E{’EIPﬁ,p’(]‘O )7}

- )
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Channel Model

* Channel capacity at time ‘t’: Total loT devices
Total bandwidth ~

I//g + !tp f ):' if '}*;fp(f) = YVth;
f(0) =1 [T
1p

0, otherwise.

* The received power at ground BS ‘b’ from UAV-BS ‘v’ as:

. C -»| Distance between UAV-BS and round BS
P _ ptx | Gt:r Vet
o,u b,u b 471'5{1 f—m-me’m;ﬂ )
\ K I s mmWave carrier frequency

Transmit power of UAV-BS Antenna gain of transmitter and
receiver

v

* The channel capacity between UAV-BS and ground BS :

W Py,
T;n;n'ﬂ’mw(t) _ 3;}1{;}1 ave log (1 + ,j‘“mw““ 0'3)* (Su p = \/(Tu — mb)g + (yu — yb)g
0, otherwise.

Sarder Fakhrul Abedin, Md. Shirajum Munir, Nguyen H. Tran, Zhu Han, and Choong Seon Hong, “Data Freshness and Energy-Efficient UAV Navigation =
K%HE&HEE Optimization: A Deep Reinforcement Learning Approach”, IEEE Transactions on Intelligent Transportation System, IEEE Transactions on Intelligent Transportation (K_(/
Systems, Vol.22, No.9, pp. 5994-6006, Sep. 2021 R ING o



Channel Model

* Transmission energy of UAV-BS while using backhaul link at time t:

Er;n-mﬁf’mm (f) — >< Ti;niinﬂf ﬁ’i}ﬂ(t)'

* Total mobility energy cost of UAV:

Eu(t) = 6u(t) X Eprop. "

— \/h,ﬁ T ||ﬂfﬁ»)2 ,0<t<T. |« Horizontal Distance

Eprﬂp — kl

a: acceleration, v: velocity, g: GraV|tat|onaI acceleration
* The total energy efficiency for UAV-BS covers trajectory points to serve loT devices over

’Lllg + ||U|| (1 —|— ”a” ) “— UAV propulsion energy

times T:
T |'-D| mmﬁ‘ave |I|
. () + 7 vty 1)
Emm Wave t ’
B> pzl 0 + Bu(t)
Sarder Fakhrul Abedin, Md. Shirajum Munir, Nguyen H. Tran, Zhu Han, and Choong Seon Hong, “Data Freshness and Energy-Efficient UAV Navigation N
KYUNG HEE  Optimization: A Deep Reinforcement Learning Approach”, IEEE Transactions on IntelligentTransportation System, IEEE Transactions on Intelligent Transportation (K_(/
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Problem Formulation

arg max Z 1N(Pu,u), (14) | Maximize Energy Efficiency of UAV-BS
{Pu}uéu ucld

subject to

ﬂ P, ={b},Vu e U/, (15) | Non-Overlapping trajectories of UAV-BSs except ground BS
ueld
U Pu=P,Vuel, (16) | Al trajectories points are covered
ueld
"’?(Pu) > Nen, Vu €U, (17) | Energy Efficiency constraint
A A th
Ap(Py) < Aj ,Vp € P,\{b}. (18) | Aol constraint

Sarder Fakhrul Abedin, Md. Shirajum Munir, Nguyen H. Tran, Zhu Han, and Choong Seon Hong, “Data Freshness and Energy-Efficient
My KYUNG HEE UAV Navigation Optimization: A Deep Reinforcement Learning Approach”, IEEE Transactions on IntelligentTransportation System, IEEE W’:\
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Solution Approach

* We deploy the Deep Q- Learning to solve problem (14)

Energy Efficiency Average Aol for navigation optimization

* The state space for trajectory:

{Sf — pcur‘rent?pﬁﬂd?ﬁ? In € [0 nth] A e [1 Ath]}

/ N\

Current Positions Target Position

Sarder Fakhrul Abedin, Md. Shirajum Munir, Nguyen H. Tran, Zhu Han, and Choong Seon Hong, “Data Freshness and Energy-Efficient

5 KYUNG HEE UAV Navigation Optimization: A Deep Reinforcement Learning Approach”, IEEE Transactions on IntelligentTransportation System, |EEE W’:\
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Solution Approach

* The action space of UAV-BS is the trajectory planning each of the UAV-BS’s navigation from
one feasible state (i.e., position) to the next state while satisfying the trajectory and
communication constraints.

* The learning agent selects an action a; from the available actions upon state s;:

Ly S A‘,t C A, "4 — {H'la T aa'U} — {.P?L}'MEM

* At each state transaction, the agent receives the immediate reward which is used to form the
trajectory control policy for navigation:

aq1(ay ), if contraints (15)-(18) of (14) are true,
Reward R, = —a1, 1f contraints (15)-(17) of (14) are violated,
0, 1if contraints (15)-(18) of (14) is violated.

(19)

Sarder Fakhrul Abedin, Md. Shirajum Munir, Nguyen H. Tran, Zhu Han, and Choong Seon Hong, “Data Freshness and Energy-Efficient
By KYUNG HEE UAV Navigation Optimization: A Deep Reinforcement Learning Approach”, IEEE Transactions on IntelligentTransportation System, |EEE (N’_\:
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Solution Approach

* The objective of the learning agent over T time slot is fo maximize the future reward:

T
R(s,a;t) = Z Y(to) x Re(t —to), (20)|  Reflecting the trade-off between
to=0 the importance of immediate and

future rewards : [0, 1]

* Q-function or action value function is defined as: Transaction probability

Q‘JT(S:(].) _ I?(ea) +7’ZH§VW’ Discounted cumulated state function

sES T'«— Control policy

* Goal is to obtain the best control policy. Therefore, the maximum Q-function is:

opt

Q" (s,a)= E[R + 7 max Qﬂopt (s',a")|s, a.] , (22)

Vﬂopt(s) = max [Qﬁopt(& a)].

* To derive the optimal control policy, the Q- function is updated as:
L},arning rate

X
Qi (s,a) = Q¢(s,a) + ’t,!}(R + v [ ]:1};}3{ Qg(qu’ a.f)] — Q4 (s, a))g
(24)

Sarder Fakhrul Abedin, Md. Shirajum Munir, Nguyen H. Tran, Zhu Han, and Choong Seon Hong, “Data Freshness and Energy-Efficient UAV Navigation Optimization: A
KYUNG HEE Deep Reinforcement Learning Approach”, IEEE Transactions on Intelligent Transportation System, IEEE Transactions on Intelligent Transportation Systems, Vol.22, No.9, pp.
‘ ' 5994-6006, Sep. 2021




Solution Approach

Algorithm 1: DQN with experience replay for UAV-BS 16 Step 3: Testing UAV-BS trajectory policy for
Trajectory Policy Optimization for Navigation UAV-BS navigation
1 Step 1: Initialization 17 Load the stored Q-network of Step 1
2 Initialize Q(s,a;0), M, target DQN parameters 6~ and 18 Retrieve R; of the UAV-BSs at time slot ¢
construct DON 19 Retrieve and select joint UAV-BS action
Step 2: Training DQN with experience replay a; = max,, Q™ (s¢,a;0)
fore=1,---,FE do 20 Update trajectory of UAV-BSs based on joint action
Initialize S index and target values of DQN

fort=1,--- .17 do

Calculate the energy efficinecy metric of the
UAV-BSs using (11)

Calculate instant reward R, using (19)

Select action a; with given probability e.

Observe 1nstant reward R; and next state sy
Store experience (s¢, Sy, ay, Ry, Ry) in the
experience replay memory M
Randomly sample minibatch of experiences from
M hl Building Q- Network
Adopt stochastic gradient descent (SGD) to train
the DQN using loss function in (27)
Update ¢ and Q(s,a;#)
Store the Q-network

&Y KYUNG HEE : . _ N (KG
‘(“’ UNIVERSITY Sarder Fakhrul Abedin, Md. Shirajum Munir, Nguyen H. Tran, Zhu Han, and Choong Seon Hong, “Data Freshness and Energy-Efficient UAV =
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Numerical Results

—8— DON with replay meamaory
—M|- Greedy
1.2 1 --¥- Baseline DQN L 4

1.0+

Average cumulative reward

0.9 4

& 8 10 12 14
Number of Trajectory

Fig. 2: Average cumulative reward comparison between the proposed
approach and the baseline approaches over different numbers of
trajectory way-points.

—e— DOMN with replay memory
0.56 4 —M- Greedy
--¥- Baseline DOQN =

0.54 4

0.52 4

Average energy efficiency

0.50 4

0.48 4

é- a8 1|0 12 14
Number of Trajectory

Fig. 4: Average energy efficiency comparison between the proposed
and the baseline approaches over different number of trajectory way-

Average Aol

Fig. 3:
and the
points.

025 - —8— DOQMN with replay memory
) —m- Greedy
--%¥- Baseline DON
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Number of Trajectory
Average Aol comparison between the proposed approach

baseline approaches over different number of trajectory way-
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Fig. 5: Average bandwidth efficiency comparison between the pro-
posed and the baseline approaches over different number of trajectory

points. way-points. .
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* We focused on developing the UAV-BS navigation policy to improve data freshness and
accessibility to the loT network.

Summary

* An agile deep learning reinforcement with an experience replay model that is well-suited to
solving the energy-efficient UAV-BS navigation problem under trajectory and Aol constraints

* The numerical results also confirmed that effectiveness of the proposed DQN with
experience replay memory under different network conditions

Sarder Fakhrul Abedin, Md. Shirajum Munir, Nguyen H. Tran, Zhu Han, and Choong Seon Hong, “Data Freshness and Energy- _
l( v kyung ugg  Efficient UAV Navigation Optimization: A Deep Reinforcement Learning Approach, IEEE Transactions on Intelligence Transportation (&:
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Use Case 5: 3TO: THz-Enabled Throughput and
Trajectory Optimization of UAVs in 6G Networks

* [ntroduction

* System Model

* Problem Formulation
* Solution Approach

* Simulation Results
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DRL for Aerial Networking: THz-Enabled Throughput and Trajectory Optimization in 6G Network

System model of THz-enabled UAVs network

: 5
i THz-UAV =
v" Problem Statement : o -
1 s o
= Next-generation networks  Interference 2
need to meet ubiquitous and S
high data-rate demand + Downlink
= Exploring THz-enabled : 8
UAVs to facilitate ubiquitous \Gitiind User .
6G mobile communication E >
networks TP i [
1 =
A g 1E
' UAV A&
+ Trajectory :
1
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DRL for Aerial Networking: THz-Enabled Throughput and Trajectory Optimization in 6G Network

Summary of Investigations

v’ This work considers the throughput and trajectory optimization of terahertz (THz)-enabled
unmanned aerial vehicles (UAVs)

" That enables the ubiquitous demands in the sixth-generation (6G) communication networks.

v In the considered scenario, multiple UAVs must provide on-demand terabits per second
, P P P
(Tb/s) services to an urban area along with existing terrestrial networks

v However, THz-empowered UAVs pose some new constraints,

®= Dynamic THz-channel conditions for ground users (GUs) association and UAV trajectory
optimization to fulfill GU’s throughput demands

v’ Thus, a framework is proposed to address these challenges, where a joint UAVs-GUs
association, transmit power, and the trajectory optimization problem is studied

. G S. S. Hassan, Y. M. Park, Y. K. Tun, W. Saad, Z. Han. and C. S. Hong, “3TO: THz-Enabled Throughput and Trajectory Optimization of UAVs in 6G W\
'fqu’ KYLHEMHEE Networks by Proximal Policy Optimization Deep Reinforcement Learning," IEEE International Conference on Communications 2022 (ICC 2022). il
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Goal is to maximize the total throughput from all the deployed UAVs while satisfying the QoS

DRL for Aerial Networking: THz-Enabled Throughput and Trajectory Optimization in 6G Network

and trajectory constraints of each GU and UAYV, respectively.

v" The throughput maximization problem can be defined as follows: Ri.m(n) = ag.mBr.m10ogs (1 4+ Yi.m)
Pl: max Ry (n) (5a) c e .« e
,Prq / Optimization objective
N M
7 lo
ASSOCiCIfion s.1. Z Z ﬂk,ml.Rk,ﬁ:.(ﬂ) > Rk (n): VEk € K:a (Sb)
n=tm=1 , QoS constraint
ak,mRem(n) > R™, Vme M,ke K,neN,
Power (5¢)
M Each GU can be associated with at most one UAV
. am € {0,1}, agm =1, Yk € K,m € M,
Trajectory | mz=l
(5d) Total transmit power of the UAV have to be less
M . than the maximum transmit power
Z Pem(n) < PP Vke K,n e N, (5e)
m=1
0 < pr,m(n) < P, Ve K,n €N, (51) Guarantees that the distance between UAVs is
llai(n) — a;(m)||3 > Diin, Vi # j € K,¥n € N, not as close as the minimum distance
(5g)
llak(n +1) — akr(n)]] max
Fmov SVPEVEeKneN, UAVs speed constraint
(Sh)

XLHEEIHEE Networks by Proximal Policy Optimization Deep Reinforcement Learning," |IEEE International Conference on Communications 2022 (ICC 2022). —l
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DRL for Aerial Networking: THz-Enabled Throughput and Trajectory Optimization in 6G Network

Proposed Solution

Balanced K-means Clustering (BKMC) for ground user

Successive Convex Approximation (SCA) for transmit power

associations allocation
. lo
Algorithm 1 BKMC for GUs Association min - — Ri(n) (17a)
st.  (5b), (5e), and (5f). (17b)

1: Input: the GU locations {0 }men, the initial UAV loca-
tions {qk}kexj.
2: Initialize: Initialize centroid locations C° to UAV locations
{ak brex.
t+0
repeat
Calculate distances between GUs and UAVs.
Solve an assignment problem by Hungarian algorithm.
Calculate new centroid locations C**!.
until the positions of the centroids do not change
QOutput: Optimal user association. a*

o oee Nt oBow

Algorithm 2 SCA for Transmit Power Optimization (|17)

UNIVERSITY

1: Input: piex, p°, iteration j = 0, tolerance y, stopping
criterion e = 1.

2: 7+ 0

3: while e > v do

4 Designed R(p,p’) = I(p) — h((p,p’)) based on (12).

5 Solve (17) and find the p’*'.

6:  Calculate the stopping criterion e = |R(p’ ™) — R(p?)].

7

8

9

Update the iteration counter i.e., j = j + 1.
. end while
: Output: Optimal transmit power p*.

- S. S. Hassan, Y. M. Park, Y. K. Tun, W. Saad, Z. Han. and C. S. Hong, “3TO: THz-Enabled Throughput and Trajectory Optimization of UAVs in 6G (N\
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DRL for Aerial Networking: THz-Enabled Throughput and Trajectory Optimization in 6G Network

Proposed solution

Proximal Policy Optimization Deep max Ri(n) (18a)
Reinforcement Learning for UAVs trajectory /s,t, (5b), (5¢), (5g), and (5h). (18b)

Proximal Policy Optimization (PPO)

UAV Mobility Controller
UAVSs Position

Algorithm 3 PPO-DRL for UAVs Trajectory Optimization e The state s,(n) in Iedrning time step t:
1: for episode=1,2,..., E do

S —

A

2 Initialize randomly each GU’s positions St (n) — {{qk(n)}k‘EFC 3 {Um}mEJM } _

3:  GUs Association o by Algorithm 1 Locations: UAV and Network Environment

4 for actor=1.2,..., A do ocations: and user ?

5 for time slot=1,2,.... N do .. ) . State | Action

6 Run policy m,, in environment * The action in learning step t at time slot /

7 Optimal Power Allocation P by Algorithm 2 n is the speed and the moving: Policy Policy

8 Save (s, an, T, Snt+1) 1n Trajectory memory . . . .

9 end for {{'Uk [n)?¢k (ﬂ)}keﬁﬂ} Optimization Evaluation

10: Compute advantage estimates Ay, . Ay
11:  end for
12:  Optimize surrogate L™ wrt 6, with minibatch from |

Speed and moving direction

Trajectory memory The reward in learning step t at time Replay Memory
130 o+ 0 slot n is divided into three:
14: end for . Agent
15: Output: The optimal PPO network e, 2, if ¢ = max step,
—2, if3i,jek
re(n) = .. A _ .
s.t. ||lqi(n) — q;(n)|| < Dmin, E: [mm(-rt(b')At,cl1p(n(9),1 —e1+4 E)At)}

f:l RE(n), otherwise.
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DRL for Aerial Networking: THz-Enabled Throughput and Trajectory Optimization in 6G Network

Simulation Results

U To assess the performance of our proposed algorithm, we consider four benchmark algorithms as follows:

* SU with RP: The algorithm which considers static UAVs (SU) positions with the random power (RP) allocation.

* OU with RP: The algorithm uses the optimal UAVs (OU) trajectory with the random power (RP) allocation.

* SU with PP: The algorithm assumes the static UAVs (SU) positions with the proposed power (PP) allocation.

* OU with PP (proposed method): The algorithm considers the optimal UAV (OU) trajectory with the proposed power (PP)

allocation. 25

TABLE I: Simulation Parameters

| Parameter | Value | Parameter | Value | E 15l
Bandwidth B=0.1 THz Channel gain at ref. | hg=—40 dBm A
Noise power |o°=—174 dBm/Hz| Max. transmit power | P™*=2 W :'2:
Minimum rate | R™"=0.02 Tbps |Absorption coefficient| a(f)=0.005 < 17
Episodes E=be + 5 Batch size 120 g
Discount factor + =0.99 Learning rate 0.0003 © 05t
Chipping € 0.2 Regularizer parameter A =095 ' J
Epochs 3 Hidden layer’s units 128 ) —&— PPO with Optimal Power
Hidden layers 2 Carrier Frequency |(f=1.2 THz [13] 0gé —— PPO with Static Power | -

2 4 6 8 10 12 14 16 18
Step x10%

Proximal policy optimization deep reinforcement
learning (PPODRL) learning results (reward)

UNIVERSITY Networks by Proximal Policy Optimization Deep Reinforcement Learning," IEEE International Conference on Communications 2022 (ICC 2022). i
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DRL for Aerial Networking: THz-Enabled Throughput and Trajectory Optimization in 6G Network

Simvulation Results
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Use Case 6: Satellite-based ITS Data Offloading &

Computation in 6G Networks

* [ntroduction

* System Model

* Problem Formulation
* Solution Approach

* Simulation Results
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Aerial and Space Networking: ITS Data Offloading & Computation in 6G Networks

System model for ITS data offloading & computation

A service architecture for data-driven ITS task
offloading and computation to MEC-enabled diverse
satellite networks is studied.

A joint delay and rental price minimization problem
for different satellite servers while optimizing
offloading task selection, computing, and bandwidth
resource allocation.

To handle the formulated mixed-integer non-linear
programming (MINLP) problem, which is NP-hard, we
propose a two-stage algorithm based on the Co-
MAPPO DRL algorithm in cooperation with the
attention approach and convex theory.

?8" KYUNG HEE Hassan, S. S., Park, Y. M,, Tun, Y. K., Saad, W., Han, Z., & Hong, C. S. (2022). Satellite-based ITS Data Offloading & Computation in 6G Networks: A Cooperative Multi-Agent Proximal @/
' UNIVERSITY Policy Optimization DRL with Attention Approach®, Submitted Revision to IEEE Transactions on Mobile Computing (TMC). Available at: https://doi.org/10.48550/arXiv.2212.05757 o
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Aerial and Space Networking: ITS Data Offloading & Computation in 6G Networks

Optimization problem formulation for ITS task offloading

Weigh-'-ed sum of medadn Meqn Service Meqn Service CTEs: Crowed-sourced Transpor'rqtion Entities
. . . . . CNS: Core Network Server
service time and price Time \ / Price .
P LMS: LEO satellite-based MEC server
051 ser Pser
m 3 (16a)
XY ’3 w VpED ‘D” » Number of tasks
Offloadin decisions N S.t—. Z mdp = 1, Yd - D, V)‘J - g, (16]:)) Summation of associated CTE will be one at each time slot.
9 vbeB
Communication Z Z ;1:3” yg# <1, Vbe B, (16¢)| Total wireless bandwidth allocation ratio is less than or equal to one.
bandwidth allocation vdeDVuet,
b b Allocated LMS and CubeSats computing resources do not exceed the threshold.
- : > > =y By, <o YbEB, (16d)
omputing resource
P 9 . vdeD Vue& Communication time between CTE and related satellite is shorted than the
allocation 3’3“ {Téf‘? CGmP} < TP Vb € B, (16e) maximum permitted time.
i . x <1.Vbe C . 16f Only those CubeSats that are already in the neighborhood of LMS [ can give
GEO-based Computing Z Z d, =1 Ly (16f) "
resource allocation VAED Vuet,
- 3;3“ e {05 1}5 Vb € B,u: Vd}u e d! Yd e D! Each CTE can only associate with one satellite at a time.
(16g)
ngu c R‘F? Vd“ c d: Vd € ’D (]6h) Ensures that each CNS h has enough computing resources.

b th 3| Ensures that bandwidth resources remains within the budget for each satellite.

Wb <Y™ vbeB (16i)
= ; ’
53 < thh: vbh € B. (16]) Ensures that bandwidth resources remain within the budget for each satellite.

1N\
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Aerial and Space Networking: ITS Data Offloading & Computation in 6G Networks

Proposed framework of Co-MAPPO DRL with Attention mechanism for ITS task offloading

ITS Network Environment

. oo o . . g =-aaasS5%S5568 6655858565 88585 0588880558558 A
*  We introduced the ability to respond to MAttention  F===—+ -~ ---S===FS==ZFi .
. . . . yMechanism : IKey "I ’ ‘IKeyLl IKey Il . ‘Ihe}' CI : )
situations in which the number of ' o ! + [Aention |"
. 1 uery ' y v ’ M value |
connected CTEs dynamically changes. ' Nane ] |'|Va;L:eL| 0 Ik
LI o o e [ el -—_J ______ 1
Weighted sum of the encoding values for other agents
* Since the input size of the general NN R ol . ¥ ; i L .
Reward State T-=------------------------=----- * ------------ - Action

model is fixed, we cannot effectively N

' (s(n)

respond to the Chcmging CTEs : Critic-loss € Mean-squared E
. . - Error '
information we want. v ) : ;
| Back- Critic R ' :
|propagation "| Network > Q. Q_target '

* Thus we proposes a learning network

.. Bl= ... :
i I 1 | G

model regardless of the number of  Cubesat | Jold Actor :
Connected CTES b Gddin Clﬂ'enﬁOn in . : : Network | |probabilities| | probabilities -
] 7 9 4 y : O16(m) {Update Weights Policy Network Ratio] : @
front of the input layer. P {New Actor] )| New New log- ; :
ICubeSat €}~ | J.¢: Network | [probabilities| | probabilities : :
’n E @" [ E T-‘B:u:k—prlnpagmim] H.&c(or—lossHl[in{A*Ratio.A*Clip}‘ L

------- - = L, A

F=————— = —————

' !

' o

1

' y

I

I

CTEs: Crowed-sourced Transportation Entities '| Experience -
: Pool L <
L ' .
"
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Aerial and Space Networking: ITS Data Offloading & Computation in 6G Networks

Experimental Results
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Figure 7: Comparison with benchmarks schemes for various number of sub-tasks.
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Figure 8: Comparison with benchmarks schemes for various task memory.

Service Price vs varying task memory.

Obijective value comparison of Co-MAPPO with benchmarks schemes for varying task memory. Service time vs varying task memory.
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Aerial and Space Networking: ITS Data Offloading & Computation in 6G Networks

Experimental Results
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Challenges and Ongoing Research

* There are still several challenging issues which are under unexplored:

The optimal deployment of UAVs to get the maximum coverage area and strong wireless
signal strength with low co-channel interference.

* Controlling the trajectory of the UAVs to make sure the safety distance between UAVs and the
optimal resources (i.e., bandwidth, and power) allocation to get the maximum data rate by
taking into account the energy constraint of the UAVs.

* Considering the optimal user association with the UAVs to achieve the highest rate.

* Space-Air-Ground channel modeling.
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Challenges and Ongoing Research

Satellite Communications and Al

v' Constellation’s resources problems
= Routing among satellites
=  Beam placement and beam shaping
=  Frequency assignment
=  Power allocation
* Federated Learning for resource sharing
= RIS based beamforming

v’ Limitations due to interactions
" Long-horizon forecasting in LEO environment
= Multiuser demand prediction
=  Search space complexity
v New Al models and architecture
*= Transfer learning for satellite architectures
= New prediction models for intra-orbit resource management
= Al model for orbits as resources
=  Collaborative multiagent systems for end-to-end service management
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Thanks for your attentionl!!
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