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• UAV-Assisted Wireless Networks: The Concept and Challenges 

• Use Case Scenarios 
▪ Ruin Theory for Energy-Efficient Resource Allocation in UAV-assisted 

Cellular Networks
▪ Energy-Efficient Resource Management in UAV-Assisted Mobile Edge 

Computing 
▪ Data Freshness and Energy-Efficient UAV Navigation Optimization: A 
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▪ 3TO: THz-Enabled Throughput and Trajectory Optimization of UAVs in 
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• Challenges and Ongoing Research 

Outline 2
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• Fifth-generation (5G) and beyond 
communications are mainly characterized by 

1) massive connectivity, 

2) ultra-reliability and low latency, and

3) increased throughput. 

• Satisfying these objectives in conjunction with 
the rapid growth of the Internet of Things 
(IoT) applications represents a challenging 
task, especially in highly dynamic and 
heterogeneous environments. 

• A promising approach is to adopt unmanned 
aerial vehicles (UAVs) and Satellites as aerial 
user equipments (UEs) or flying base stations 
(BSs). 

Introduction 3

Image Source: https://www.netscout.com/solutions/5g

Bithas, P.S.; Michailidis, E.T.; Nomikos, N.; Vouyioukas, D.; Kanatas, A.G. A Survey on Machine-Learning Techniques for UAV-Based 
Communications. Sensors 2019, 19, 5170



NETWORKING 

INTELLIGENCE LAB

• The current wireless communication system fully depends on the 
infrastructure in order to provide services to mobile users. However, the 
deployment and operational cost of the infrastructure are high.

• Actually, mobile users can not get any services when infrastructure 
collapses because of the natural disasters. 

• Moreover, users especially in the mountain areas, countryside and deep 
sea also can get internet access because it is difficult and not possible to 
deploy infrastructure for wireless communication. 

Introduction: Drawback of Current Communication System? 4
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Introduction: Drawback of Current Communication System? 5

Source: https://www.internetworldstats.com/stats.htm

Only 67.9% of world population can get internet access in till 2023. So, 

how about the remaining 32.1 % ???? 
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• In particular, UAV-based communications can improve the network performance in emergency 
situations by providing rapid service recovery and by offloading in extremely crowded 
scenarios. 

• The integration of artificial intelligence (AI) and machine-learning (ML) techniques in wireless 
networks can leverage intelligence for addressing various issues. 

• Thus, the combination of AI/ML and UAVs or Satellites appears to be strongly correlated in 
different disciplines and applications and throughout the network layers, promising 
unprecedented performance gains and complexity reduction.

Introduction: AI/ML 6

Bithas, P.S.; Michailidis, E.T.; Nomikos, N.; Vouyioukas, D.; Kanatas, A.G. A Survey on Machine-Learning Techniques for UAV-Based 
Communications. Sensors 2019, 19, 5170
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UAV-Assisted Wireless Networks: The Concept and 

Challenges
• Overview 

• Ongoing Projects

• Types of UAVs

• Industrial Applications

• Challenges of UAV Deployment in Communication System 

• Application of AI in UAV-based Communication

7
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UAV-Assisted Wireless Networks Overview 8

1

23

Cube satellite

Airship

Drone

AI

On-demand unmanned aerial vehicle base station 
deployment

On demand data collection and analysis

Providing user-oriented services in next-generation 
mobile devices

Base Station/ Small-cell Base Station/AP
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Ongoing Projects: (SpaceX : Starlink Project) 9

https://www.starlink.com/
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• Each satellite weighs 
approximately 573 pounds 
(260kg) and features a 
compact, flat-panel design that 
minimizes volume, allowing for a 
dense launch stack to take full 
advantage of the launch 
capabilities of SpaceX's Falcon 
9 rocket.

• The satellites will be around 
350 miles above earth.

Ongoing Projects: (SpaceX : Starlink Project) 10

https://www.starlink.com/
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How many satellites will be needed for the 
services?

Federal Communications Commission (FCC)  allows to put 
12,000 SpaceX satellites above the planet 

Ongoing Projects: (SpaceX : Starlink Project) 11

How fast will Starlink internet speeds be like?

• The latency should be between 25ms and 35 ms. This is 
fast enough for most internet tasks, including gaming.

• Download speeds will be pretty quick, at about 1Gbps

When can Starlink internet be available?

- launched in 2021

https://www.starlink.com/
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• Ku (12-18 GHz), Ka (26.5-40 GHz) and V (40-75 GHz) bands.

• V and Ku bands for network’s users.

• V and Ka bands will be used to connect to gateways and for tracking, telemetry and control 
purpose.

https://www.elonx.net/starlink-
compendium/#:~:text=Here%20is%20a%20breakdown%20of,GHz%20and%2037.5%20%E2%80%93%2042.5%20GHz&text=Transmissions%20from%20
gateways%20to%20satellites,GHz%20and%2050.4%20%E2%80%93%2051.4%20GHz

Ongoing Projects: (SpaceX : Starlink Project) 

https://www.elonx.net/starlink
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Goolge’s Project Loon: A network of balloons travelling on the edge of
space is designed to connect people in rural and remote areas, helping fill
coverage gaps, and brining people back online after natural disasters.

Ongoing Projects: Google’s Project Loon (High Altitude Platform) 13

Source: https://www.seminarsonly.com/computer%20science/project-loon-seminar-report-ppt.php
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The Loon Flight System consists of :

1. Balloon envelope

2. Bus

3. The payload

Ongoing Projects: Google’s Project Loon (High Altitude Platform) 14

https://loon.com/technology/

Helium bag

DGPS: Differential Global Positioning Systems
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Balloon Envelope

Made from polyethylene, each tennis-court-
sized balloon envelope actually consists of a
balloon inside of a balloon. A fixed amount of
lift gas in the inner balloon keeps the system
aloft. Adding or releasing outside air to the
outer balloon changes density, allowing the
system to ascend or descend when needed.
The balloons are built to last for hundreds of
days before landing back on Earth in a
controlled descent.

Ongoing Projects: Google’s Project Loon (High Altitude Platform) 15

https://loon.com/technology/flight-systems/
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Bus

The bus consists of the hardware necessary for
safe flight operations, including highly efficient
solar panels that power the system, an altitude
control system for navigation, and a parachute
that deploys automatically to guide the balloon
safely back to Earth after flight. For added
safety, Loon includes redundant satellite
communications links and transponders for
constant visibility to air traffic control.

Ongoing Projects: Google’s Project Loon (High Altitude Platform) 16

https://loon.com/technology/flight-systems/
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Payload

The payload consists of the communications
equipment required to deliver connectivity,
including the radio base station and antennas.

Ongoing Projects: Google’s Project Loon (High Altitude Platform) 17

https://loon.com/technology/flight-systems/
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HOW IT WORKS
• Loon integrates with mobile network 

operators’ existing network 
infrastructure to extend their 
coverage. 

• We maximize value by delivering 
seamless connectivity to subscribers 
through a unique solution of ground 
gateways, flight vehicles and 
software.

Ongoing Projects: Google’s Project Loon (High Altitude Platform) 18

https://loon.com/technology/flight-systems/
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The Differences Between UAV, UAS, and Autonomous Drones 19

What Is an Unmanned Aerial Vehicle (UAV)?

“UAV” refers specifically to aircraft that can be remotely
piloted without requiring a human on-board to fly. While this
term can be used accurately to describe drones in commercial
or civilian use cases, it is most commonly used in reference to
military applications.

Two types of UAVs

Fixed Wing UAV Rotary Wing UAV

https://percepto.co/what-are-the-differences-between-uav-uas-and-autonomous-drones/
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The Differences Between UAV, UAS, and Autonomous Drones 20

https://itlaw.fandom.com/wiki/Unmanned_aircraft_system

What is an Unmanned Aircraft 
Systems (UAS)?

“Unmanned aircraft systems” refers to
the entire system required for
advanced drone operations including
the aircraft, ground control station,
and communications system. UAS can
either require a human pilot on the
ground or be fully autonomous
without need for a human. Any UAS
includes a UAV as the aircraft
component of the system.
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The Differences Between UAV, UAS, and Autonomous Drones 21

https://percepto.co/what-are-the-differences-between-uav-uas-and-autonomous-drones/

What is an Autonomous Drone?

The term “autonomous drone” describes a UAV that can operate
without any human intervention. In other words, it can take off,
carry out missions, and land completely autonomously.

An “autonomous drone” is a type of UAV, but a UAV is not
necessarily an “autonomous drone”. In the case of autonomous
drones, communications management software coordinates
missions and pilots the aircraft instead of a human. Because an
“autonomous drone” is piloted by software instead of a human,
an autonomous drone is part of a UAS by definition, as it requires
a complete system to operate.
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Types of UAVs: Automation VS Autonomy 22

https://dronelife.com/2019/03/11/droneii-tech-talk-unraveling-5-levels-of-drone-autonomy/
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Types of UAVs: Levels of Drone Autonomy 23

https://dronelife.com/2019/03/11/droneii-tech-talk-unraveling-5-levels-of-drone-autonomy/
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Types of UAVs: Levels of Autonomy & Drone Applications 24

https://dronelife.com/2019/03/11/droneii-tech-talk-unraveling-5-levels-of-drone-autonomy/
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Industrial Applications:  Examples 25

http://www.uavvoice.com/Catalogue_Communication_System_for_UAV.pdf
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Industrial Applications: Temporary Events 26

On-Demand Aerial Base Station Deployment 
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• To access the vegetation health by using Remote Sensing (RS) 
techniques and image analytics.

• One of the most applied RS techniques is aerial monitoring, 
by using images captured by satellites, manned aircrafts and 
UAV

• Satellites images are very expensive for a typical farmer, 
usually their resolution and quality are not satisfactory and 
practical due to weather conditions 

• Aerial images captured by human-crewed aircrafts present a 
better quality compared to the satellite images, but this 
method is also very expensive 

• Small UAVs, also known are drones are characterized as a 
more economical solution 

Industrial Applications: Smart Farming 27

Panagiotis Radoglou-Grammatikis, Panagiotis Sarigiannidis, Thomas Lagka, Ioannis Moscholios, “ A compilation of 

UAV applications for precision agriculture, Computer Networks, 2020. 
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• At the top level, UAVs 
connect to the GPS satellite 
by equipping receiver on 
board, which periodically 
provides the geolocation and 
time information

• This is critically important for 
UAVs to accurately and 
safely accomplish the 
disaster response tasks

Industrial Applications: Disaster Areas 28

Panagiotis Radoglou-Grammatikis, Panagiotis Sarigiannidis, Thomas Lagka, Ioannis Moscholios, “ A compilation of 

UAV applications for precision agriculture, Computer Networks, 2020. 
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Industrial Applications: Vehicular Networks ( High Speed Trains) 29

Haitham S. Khallaf, and Murat Uysal, “UAV-Based FSO Communications for High Speed Train Backhauling”, 
IEEE WCNC 2019.

• UAV can also be used as a relay 

for vehicles and high speed trains 
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• UAVs are energy constrained devices. Therefore, efficient energy 
management is essential.

• Energy-aware trajectory optimization for the good channel quality

• Optimal communication and computation resource allocation to overcome 
the onboard energy limitation while meeting the users' QoS requirements

• The dynamic deployment of a swarm of UAVs in an automatic manner to 
mitigate interference and avoid collision 

Challenges to deploy UAVs in Communication System 30
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• Interference Management

• Autonomous Path-Planning

• UAV Swarm Intercommunication

• Cooperative Multi-UAV Transmission

Applications of the AI/ML in UAV-based communications 31

Bithas, P.S.; Michailidis, E.T.; Nomikos, N.; Vouyioukas, D.; Kanatas, A.G. A Survey on Machine-Learning Techniques for UAV-Based 
Communications. Sensors 2019, 19, 5170
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Applications of the AI/ML in UAV-based communications 32

Bithas, P.S.; Michailidis, E.T.; Nomikos, N.; Vouyioukas, D.; Kanatas, A.G. A Survey on Machine-Learning Techniques for UAV-Based 
Communications. Sensors 2019, 19, 5170
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Use Case 1: Ruin Theory for Energy-Efficient 

Resource Allocation in UAV-assisted Cellular 

Networks
• Introduction

• System Model

• Ruin Theory Preliminaries

• Problem Formulation

• Solution Approach

• Simulation Results

33
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UAV-Assisted Cellular Networks

• Communication features of UAV

• Line-of-site communication at high altitudes

• Dynamic placement at desired locations

• Flexibility and automation

• UAV Communication Challenges

• Energy efficiency

• Trajectory design

• Channel modelling 

• Deployment

• Interference management

• Resource allocation

34
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System model of UAV-assisted cellular network 35

Aunas Manzoor, C. S. Hong et al. “Ruin Theory for Energy-Efficient Resource Allocation in UAV-assisted Cellular Networks”. arXiv

preprint arXiv:2006.00815, 2020.

UAV initial 

power

Harvested

power
Hovering

power

Transmit 

power

UAV surplus 

power
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• SINR:

• Channel gain: 

• Path-loss:

• Probability of LoS:

• Data rate:

UAV Channel Model 36

Power

Association

Aunas Manzoor, C. S. Hong et al. “Ruin Theory for Energy-Efficient Resource Allocation in UAV-assisted Cellular Networks”. IEEE 

Transactions on Communications, Vol. 69, No.6 pp. 3943-3954, June 2021

Channel gain

Noise

Interference

Pathloss

LoS losses

Non-Los Losses

Los pathloss

Non-Los pathloss

Total pathloss

Probability of non-Los

Bandwidth SNR

Environmental constants
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5G-NR coexistence frame structure 37

URLLC Association eMBB Rate

TTI: Transmission Time Interval

Djk represents the amount of data which 
can be communicated from BS j to the 
eMBB user k during time T

Aunas Manzoor, C. S. Hong et al. “Ruin Theory for Energy-Efficient Resource Allocation in UAV-assisted Cellular Networks”. IEEE 

Transactions on Communications, Vol. 69, No.6 pp. 3943-3954, June 2021
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• Ruin theory expresses an insurer’s vulnerability of bankruptcy

• Surplus process represents the insurer’s capital at a time instant, t, and comprises two 
opposing cash flows

• The insurance premiums

• Random claims

• Definition of Probability of ruin:

Ruin Theory Preliminaries 38

Premium (harvesting power)

Random claims

(power cosumed by transmitting)

Initial power

Aunas Manzoor, C. S. Hong et al. “Ruin Theory for Energy-Efficient Resource Allocation in UAV-assisted Cellular Networks”. IEEE 

Transactions on Communications, Vol. 69, No.6 pp. 3943-3954, June 2021
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Ruin-based: Problem Formulation 

Total transmission and processing cost minimization problem. 

Data rate
Probability of ruin

BS transmission power budget

URLLC reliability

Unique user association

Variable bounds

URLLC latency

39

Ensuring the immediate scheduling

Aunas Manzoor, C. S. Hong et al. “Ruin Theory for Energy-Efficient Resource Allocation in UAV-assisted Cellular Networks”. IEEE 

Transactions on Communications, Vol. 69, No.6 pp. 3943-3954, June 2021
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• URLLC Association: At time slot t,         number of URLLC users are scheduled in the 
same slot. A user k’ is associated with the BS j which delivers best SINR

• URLLC Power allocation: Optimal power allocation to meet certain SINR threshold 
which ensures the URLLC reliability

• Optimal solution lies on boundary

• Compute optimal power

URLLC Allocation 4040

SINR
SINR Threshold Reliability

the inverse CDF of γjk ,
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• Association problem:

eMBB User Association 4141

Control factor 

The finite-time probability of ruin
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eMBB Power Allocation 42/12

• Power Allocation Problem:
• Standard Form of Power Allocation Problem:

42

The achievable rate for the set of the associated eMBB users 

Aunas Manzoor, C. S. Hong et al. “Ruin Theory for Energy-Efficient Resource Allocation in UAV-assisted Cellular Networks”. IEEE 

Transactions on Communications, Vol. 69, No.6 pp. 3943-3954, June 2021
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• KKT Conditions

eMBB Power Allocation 43

• Optimal Power

• Lagrangian Function: 

Lagrangian multiplier for power budget constraint of BS

θjk is the channel gain for the user k from BS j

When the KKT conditions are satisfied, the optimal solution of the Lagrangian function is obtained



NETWORKING 

INTELLIGENCE LAB

eMBB Power Allocation 44
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Systematic Diagram of Proposed Algorithm 45

Aunas Manzoor, C. S. Hong et al. “Ruin Theory for Energy-Efficient Resource Allocation in UAV-assisted Cellular Networks”. IEEE 

Transactions on Communications, Vol. 69, No.6 pp. 3943-3954, June 2021
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Performance Evaluation (1)

Network rate vs. number of cellular users in the network. 

46

Comparison of ruin and SINR-based approach for UAV flight 

time and number of served users.

Aunas Manzoor, C. S. Hong et al. “Ruin Theory for Energy-Efficient Resource Allocation in UAV-assisted Cellular Networks”. IEEE 

Transactions on Communications, Vol. 69, No.6 pp. 3943-3954, June 2021
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Performance Evaluation (2) 47

Comparison of ruin and SINR-based approach 

for UAV flight time and number of served users.
Network rate vs. number of cellular users in the network.

Aunas Manzoor, C. S. Hong et al. “Ruin Theory for Energy-Efficient Resource Allocation in UAV-assisted Cellular Networks”. IEEE 

Transactions on Communications, Vol. 69, No.6 pp. 3943-3954, June 2021
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• The UAV-assisted cellular networks to enhance the cellular network capacity is 
studied.

• We have formulated a joint optimization problem for the user association and power 
allocation for the 5G NR traffic classifications. 

• First, the probability of ruin is used to estimate the possible number of cellular users 
to be associated with each UAV.

• Then we have iteratively solved the power allocation problem.

• Simulation results have demonstrated the effectiveness of the proposed ruin-based 
energy-efficiency scheme.

Summary 48

S.M. Ahsan Kazmi, Latif U. Khan, Nguyen H. Tran, Choong Seon Hong, "Network Slicing for 5G and Beyond Networks," ISBN 978-

3-030-16169-9, Springer
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49

Use Case 2: Energy-Efficient Resource Management in 

UAV-Assisted Mobile Edge Computing   
• Introduction

• System Model

• Problem Formulation

• Solution Approach

• Simulation Results
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• Recently, unmanned aerial vehicles (UAVs) have been widely deployed to extend 
the coverage area of the cellular networks and to provide network services to mobile 
devices where cellular infrastructures are not deployed yet

• Moreover, by implementing a MEC-enabled UAV, a network operator can provide 
remote and on-demand MEC services to users that are out of infrastructure coverage 
area

• However, there are several challenges such as energy minimization of both UAV and 
mobile users, optimal task offloading, resource allocation, and the UAV’s trajectory 
while satisfying the mobile devices’ latency requirement  

Introduction 50

Yan Kyaw Tun, Yu Min Park, Nguyen H.Tran, Walid Saad, Shashi Raj Pandey, and Choong Seon Hong,

“Energy-Efficient Resource Management in UAV-Assisted Mobile Edge Computing”, IEEE Communication Letters, Oct 2020.
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System Model 51

• A set of mobile devices  :     

• Location of device ‘u’    :

• UAV’s total flight period :

• UAV is flying at fixed altitude :  H

• Location of UAV at time ‘t’  :  

• Discretize UAV flight period into N time slots

• UAV needs to return initial location at the end of flight period :    

Yan Kyaw Tun, Yu Min Park, Nguyen H.Tran, Walid Saad, Shashi Raj Pandey, and Choong Seon Hong,

“Energy-Efficient Resource Management in UAV-Assisted Mobile Edge Computing”, IEEE Communication Letters, 

Oct 2020.
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• Speed constraint of UAV at time slot ‘n’ :

• The energy consumption of UAV flight at time slot ‘n’: 

• The distance between UAV and device ‘u’ at time slot ‘n’:

• The achievable data rate of device ‘u’ at time slot ‘n’:   

Communication Model 52

UAV weight

Transmit power of device Channel gainBandwidthAssociation

the length of each time slot
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• Computation task of device ‘u’ at time slot ‘n’ can be denoted as tuple:

• Fraction of task executed remotely at UAV and device ‘u’:                and

• Local Computation Latency/delay of device ‘u’:

• Local energy consumption of device ‘u’ at time slot ‘n’:  

Local Computing Model 53

Required CPU cycles to compute 1-bit of 

input data
Input data size Tolerable amount of time to complete task

Computation capacity (cycles/s) of device ‘u’

A constant which depends on the chip architecture of 
the mobile device
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• Uplink transmission time of device ‘u’ when assigning fraction of task 𝑙𝑢(𝑛) to UAV as time slot ‘n’:

• The uplink energy consumption: 

• The computation latency at UAV: 

• The energy consumed by the UAV for executing the fraction of task of device ‘u’:

UAV-Aided Edge Computing Model 54

Computation capacity of UAV allocated to device ‘n’

Yan Kyaw Tun, Yu Min Park, Nguyen H.Tran, Walid Saad, Shashi Raj Pandey, and Choong Seon Hong,

“Energy-Efficient Resource Management in UAV-Assisted Mobile Edge Computing”, IEEE Communication Letters, 

Oct 2020.
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Problem Formulation 55

• To the best of our knowledge, our work is the first to consider the energy minimization of both UAV and mobile devices 

by jointly optimizing the UAV’s trajectory, communication and computation resource allocation, and task assignment. We 

can formally post this problem as follows: 

Yan Kyaw Tun, Yu Min Park, Nguyen H.Tran, Walid Saad, Shashi Raj Pandey, and Choong Seon Hong,

“Energy-Efficient Resource Management in UAV-Assisted Mobile Edge Computing”, IEEE Communication Letters, Oct 

2020.

Latency constraint of task of each device at each time slot 

Data size constraint of task of each device

Computation capacity constraint of UAV

Power constraint of each device 

Fraction of bandwidth allocated to each device

Speed constraint of UAV

Location of UAV at initial and final flight
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• Our proposed problem is MINLP, therefore, it is an NP-hard problem. Therefore, we use Block 
Successive Upper-bound Minimization (BSUM) method to solve the problem. Then, we rewrite the above 
mentioned problem as follow:

• The proximal upper-bound function:  

Solution Approach 56

Penalty term

Yan Kyaw Tun, Yu Min Park, Nguyen H.Tran, Walid Saad, Shashi Raj Pandey, and Choong Seon Hong,

“Energy-Efficient Resource Management in UAV-Assisted Mobile Edge Computing”, IEEE Communication Letters, Oct 

2020.

MINLP: Mixed Integer NonLinear Programming
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Block Successive Upper-bound Minimization (BSUM) 57

Hong, Mingyi, et al. "A unified algorithmic framework for block-structured optimization involving big data: With applications in machine 
learning and signal processing." IEEE Signal Processing Magazine 33.1 (2015): 57-77.
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• The solution at each iteration can be updated by solving the following sub-problems: 

Solution Approach 58

Yan Kyaw Tun, Yu Min Park, Nguyen H.Tran, Walid Saad, Shashi Raj Pandey, and Choong Seon Hong,

“Energy-Efficient Resource Management in UAV-Assisted Mobile Edge Computing”, IEEE Communication Letters, Oct 

2020.
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Simulation Results 59

Yan Kyaw Tun, Yu Min Park, Nguyen H.Tran, Walid Saad, Shashi Raj Pandey, and Choong Seon Hong,

“Energy-Efficient Resource Management in UAV-Assisted Mobile Edge Computing”, IEEE Communication Letters, Oct 

2020.

*BCD: Block Coordinate Descent
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Simulation Results 60
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• In this work, we have studied the problem of energy-efficient UAV trajectory optimization, 
resource allocation, and task offloading in the UAV-assisted mobile edge computing system.

• We have shown that the proposed problem exhibit a non-convex structure, and thus, it is 
challenging to solve by using traditional convex optimization techniques. 

• To address this issue, we have introduced the BSUM algorithm, which is a powerful tool for 
non-convex.

• Finally, we presented the numerical results to show the efficiency of the proposed solution 
approach where it was clear that our proposed algorithm outperforms other baseline 
algorithms.

Summary 61

Yan Kyaw Tun, Yu Min Park, Nguyen H.Tran, Walid Saad, Shashi Raj Pandey, and Choong Seon Hong,

“Energy-Efficient Resource Management in UAV-Assisted Mobile Edge Computing”, IEEE Communication Letters, Oct 

2020.
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62

Use Case 3: Blue Data Computation Maximization in 6G 

Space-Air-Sea Non-Terrestrial Networks   
• Introduction

• System Model

• Problem Formulation

• Solution Approach

• Simulation Results
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63Aerial and Space Networking: 6G Space-Air-Sea Non-Terrestrial Networks

System model for space-air-sea (SAS) networking 

▪ The seamless and reliable demand for communication is investigated to execute computational tasks in maritime

wireless networks

▪ Proposing an LEO-MEC satellite and UAV-MEC-enabled 6G SAS-NTN architecture by considering both variants of
maritime users, i.e., high and low communication capabilities

▪ The objective is to maximize sum rate of the space-air-sea network (i.e., maritime network) 

S. S. Hassan, Y. K. Tun, W. Saad, Z. Han and C. S. Hong, "Blue Data Computation Maximization in 6G Space-Air-Sea Non-Terrestrial Networks," 2021 IEEE

Global Communications Conference (GLOBECOM), 2021.
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64Aerial and Space Networking: 6G Space-Air-Sea Non-Terrestrial Networks

Summary of investigation 

S. S. Hassan, Y. K. Tun, W. Saad, Z. Han and C. S. Hong, "Blue Data Computation Maximization in 6G Space-Air-Sea Non-Terrestrial Networks," 2021

IEEE Global Communications Conference (GLOBECOM), 2021.

[1] Source: https://www.marketsandmarkets.com/Market-Reports/maritime-satellite-communication-market-113822978.html

▪ Maritime network traffic has grown significantly in 

recent years due to sea transportation [1].

▪ Non-terrestrial networks (NTN), encompassing 

space and air platforms, are a key component of 

the upcoming sixth-generation (6G) cellular 

networks.

▪ A joint task offloading and time allocation problem 

for weighted sum-rate maximization is formulated 

as a mixed-integer non-linear programming 

(MINLP).

▪ A solution based on the Bender and primal 

decomposition is proposed.

Example of LEO-MEC time resource allocation
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S. S. Hassan, Y. K. Tun, W. Saad, Z. Han and C. S. Hong, "Blue Data Computation Maximization in 6G Space-Air-Sea Non-Terrestrial

Networks," 2021 IEEE Global Communications Conference (GLOBECOM), 2021.

▪ The weighted communication sum rate of the space-air-sea network (i.e., maritime network) 

Offloading decision

Time duration for UAV

Time duration for HUE

Total time duration constraint

Each allocated time duration should be 

greater than zero

Whether HUE i will transmit its offloading 

task to the LEO-MEC or compute locally

▪ The objective is to maximize the weighted sum rate for the considered space-air-sea network

▪ The formulated mixed-integer non-linear optimization problem is as follows:

Channel Gain Input

Weight Parameter for HUE i depends 

upon their channel condition

Decision variables that need to optimize

Offloading decision variable, decide whether 

compute locally or transmit to LEO-MEC
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S. S. Hassan, Y. K. Tun, W. Saad, Z. Han and C. S. Hong, "Blue Data Computation Maximization in 6G Space-Air-Sea Non-Terrestrial

Networks," 2021 IEEE Global Communications Conference (GLOBECOM), 2021.

▪ The weighted communication sum rate of the space-air-sea network (i.e., maritime network) 

Offloading decision

Time duration for UAV

Time duration for HUE

Total time duration constraint

Each allocated time duration should be 

greater than zero

Whether HUE i will transmit its offloading 

task to the LEO-MEC or compute locally

▪ The objective is to maximize the weighted sum rate for the considered space-air-sea network

▪ The formulated mixed-integer non-linear optimization problem is as follows:

Channel Gain Input

Weight Parameter for HUE i depends 

upon their channel condition

Decision variables that need to optimize

Offloading decision variable, decide whether 

compute locally or transmit to LEO-MEC
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S. S. Hassan, Y. K. Tun, W. Saad, Z. Han and C. S. Hong, "Blue Data Computation Maximization in 6G Space-Air-Sea Non-Terrestrial

Networks," 2021 IEEE Global Communications Conference (GLOBECOM), 2021.

Proposed Algorithms

Primal Decomposition algorithm for handling 

coupling constraint

Bender decomposition is used to solve MINLP by 

decomposing into sub and master problem

C
o
nv

e
rg

e
nc

e
 C

ri
te

ri
a

Data rate objective value in Master Problem (with lower bound Rj
LB)

Upper Bound

Optimal offloading decision

Minimum objective value (data rate)

After convergence, optimal time 

values are obtained

Fixed offloading decision (dual values)

* mixed-integer non-linear programming (MINLP)
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S. S. Hassan, Y. K. Tun, W. Saad, Z. Han and C. S. Hong, "Blue Data Computation Maximization in 6G Space-Air-Sea Non-Terrestrial

Networks," 2021 IEEE Global Communications Conference (GLOBECOM), 2021.

✓ Simulation Parameters and Network topology consisting of LEO, UAV, HUEs and LUEs

✓ For our simulations, we consider the HUEs in SAS-NTN to be uniformly distributed in 500 nautical mile square area (NM2)

Network topologySimulation Parameters
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S. S. Hassan, Y. K. Tun, W. Saad, Z. Han and C. S. Hong, "Blue Data Computation Maximization in 6G Space-Air-Sea Non-Terrestrial

Networks," 2021 IEEE Global Communications Conference (GLOBECOM), 2021.

✓ Experimental Results

Convergence of Bender decomposition 

algorithm

Weighted sum-rate (bits/s) vs HUEs Comparison of proposed 

algorithm with other schemes

✓ Scheme 1: This scheme is considered as optimal results, which are computed by use of a standard optimization solver.

✓ Scheme 2: This scheme is regarded as a random task decision and time allocation to each HUE.
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What is Missing till now? 

Yes, It is   “AI” 
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• Reinforcement Learning (i.e., Q-Learning) 

• Deep Learning 

• Artificial Neural Networks (ANN)

• Deep Reinforcement Learning (DRL)

(i.e., Deep Q-Learning)

• Actor-Critic Learning         

Various Machine Learning Approaches 71
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Use Case 4: Data Freshness and Energy-Efficient UAV 

Navigation Optimization: A Deep Reinforcement 

Learning Approach
• Introduction

• System Model

• Problem Formulation

• Solution Approach

• Simulation Results
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❖ In this work, we design a navigation policy for multiple UAVs where mobile base stations 
(BSs) are deployed to improve the data freshness and connectivity to the IoT devices. 

❖ We formulate an energy-efficient trajectory optimization problem in which the objective is 
to maximize the energy efficiency by optimizing the UAV-BS trajectory policy

❖ We also incorporate different contextual information such as energy and age of information 
(AoI) constraints to ensures the data freshness at the ground BS.

❖ Second, we propose an agile deep reinforcement learning with experience replay model to 
solve the formulated problem concerning the contextual constraints for the UAV-BS navigation.

Introduction 73

Sarder Fakhrul Abedin, Md. Shirajum Munir, Nguyen H. Tran, Zhu Han, and Choong Seon Hong, “Data Freshness and Energy-Efficient 

UAV Navigation Optimization: A Deep Reinforcement Learning Approach”, IEEE Transactions on IntelligentTransportation System, IEEE 

Transactions on Intelligent Transportation Systems, Vol.22, No.9, pp. 5994-6006, Sep. 2021
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System Model 74

❖ Set of Trajectory points:

❖ Set of UAV-BSs:

❖ Set of IoT devices:

Sarder Fakhrul Abedin, Md. Shirajum Munir, Nguyen H. Tran, Zhu Han, and Choong Seon Hong, “Data Freshness and Energy-Efficient 

UAV Navigation Optimization: A Deep Reinforcement Learning Approach”, IEEE Transactions on IntelligentTransportation System, IEEE 

Transactions on Intelligent Transportation Systems, Vol.22, No.9, pp. 5994-6006, Sep. 2021
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• Probability of  LoS and NLoS between UAV-BS and IoT device:

• Path Loss in decibel (dB):

• Signal to Interference pulse noise ratio 

Channel Model 75

Elevation Angle

Attenuation factors

Interference

Distance between UAV and UE

Received signal power at UAV-
BS:  
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• Channel capacity at time ‘t’:

• The received power at ground BS ‘b’ from UAV-BS ‘u’ as: 

• The channel capacity between UAV-BS and ground BS : 

Channel Model 76

Total  IoT devices

Transmit power of UAV-BS Antenna gain of transmitter and 

receiver 

Distance between UAV-BS and round BS

mmWave carrier frequency

Total bandwidth

Sarder Fakhrul Abedin, Md. Shirajum Munir, Nguyen H. Tran, Zhu Han, and Choong Seon Hong, “Data Freshness and Energy-Efficient UAV Navigation 

Optimization: A Deep Reinforcement Learning Approach”, IEEE Transactions on Intelligent Transportation System, IEEE Transactions on Intelligent Transportation 

Systems, Vol.22, No.9, pp. 5994-6006, Sep. 2021
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• Transmission energy of UAV-BS while using backhaul link at time t:

• Total mobility energy cost of UAV:

• The total energy efficiency for UAV-BS covers trajectory points to serve IoT devices over 
times T:  

Channel Model 77

UAV propulsion energy

Horizontal Distance

a: acceleration, v: velocity, g: Gravitational acceleration 

Sarder Fakhrul Abedin, Md. Shirajum Munir, Nguyen H. Tran, Zhu Han, and Choong Seon Hong, “Data Freshness and Energy-Efficient UAV Navigation 

Optimization: A Deep Reinforcement Learning Approach”, IEEE Transactions on IntelligentTransportation System, IEEE Transactions on Intelligent Transportation 

Systems, Vol.22, No.9, pp. 5994-6006, Sep. 2021
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Problem Formulation 78

Maximize Energy Efficiency of UAV-BS

Non-Overlapping trajectories of UAV-BSs except ground BS

All trajectories points are covered

Energy Efficiency constraint 

AoI constraint 

Sarder Fakhrul Abedin, Md. Shirajum Munir, Nguyen H. Tran, Zhu Han, and Choong Seon Hong, “Data Freshness and Energy-Efficient 

UAV Navigation Optimization: A Deep Reinforcement Learning Approach”, IEEE Transactions on IntelligentTransportation System, IEEE 

Transactions on Intelligent Transportation Systems, Vol.22, No.9, pp. 5994-6006, Sep. 2021
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• We deploy the Deep Q- Learning to solve problem (14) 

• The state space for trajectory:   

Solution Approach 79

Current Positions Target Position

Energy Efficiency Average AoI for navigation optimization

Sarder Fakhrul Abedin, Md. Shirajum Munir, Nguyen H. Tran, Zhu Han, and Choong Seon Hong, “Data Freshness and Energy-Efficient 

UAV Navigation Optimization: A Deep Reinforcement Learning Approach”, IEEE Transactions on IntelligentTransportation System, IEEE 

Transactions on Intelligent Transportation Systems, Vol.22, No.9, pp. 5994-6006, Sep. 2021
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• The action space of UAV-BS is the trajectory planning each of the UAV-BS’s navigation from 
one feasible state (i.e., position) to the next state while satisfying the trajectory and 
communication constraints.

• The learning agent selects an action 𝑎𝑡 from the available actions upon state 𝑠𝑡 :

• At each state transaction, the agent receives the immediate reward which is used to form the 
trajectory control policy for navigation: 

Solution Approach 80

Reward

Sarder Fakhrul Abedin, Md. Shirajum Munir, Nguyen H. Tran, Zhu Han, and Choong Seon Hong, “Data Freshness and Energy-Efficient 

UAV Navigation Optimization: A Deep Reinforcement Learning Approach”, IEEE Transactions on IntelligentTransportation System, IEEE 

Transactions on Intelligent Transportation Systems, Vol.22, No.9, pp. 5994-6006, Sep. 2021
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• The objective of the learning agent over T time slot is to maximize the future reward: 

• Q-function or action value function is defined as: 

• Goal is to obtain the best control policy. Therefore, the maximum Q-function is:

• To derive the optimal control policy, the Q- function is updated as:

Solution Approach 81

Reflecting the trade-off between 
the importance of immediate and
future rewards : [0, 1] 

Transaction probability 

Discounted cumulated state function 

Control policy 

Learning rate  

Sarder Fakhrul Abedin, Md. Shirajum Munir, Nguyen H. Tran, Zhu Han, and Choong Seon Hong, “Data Freshness and Energy-Efficient UAV Navigation Optimization: A 

Deep Reinforcement Learning Approach”, IEEE Transactions on Intelligent Transportation System, IEEE Transactions on Intelligent Transportation Systems, Vol.22, No.9, pp. 

5994-6006, Sep. 2021
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Sarder Fakhrul Abedin, Md. Shirajum Munir, Nguyen H. Tran, Zhu Han, and Choong Seon Hong, “Data Freshness and Energy-Efficient UAV 

Navigation Optimization: A Deep Reinforcement Learning Approach, IEEE Transactions on Intelligence Transportation System, Early Access

Building Q- Network
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Numerical Results 83

Sarder Fakhrul Abedin, Md. Shirajum Munir, Nguyen H. Tran, Zhu Han, and Choong Seon Hong, “Data Freshness and Energy-Efficient UAV Navigation 

Optimization: A Deep Reinforcement Learning Approach, IEEE Transactions on Intelligence Transportation System, Early Access
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• We focused on developing the UAV-BS navigation policy to improve data freshness and 
accessibility to the IoT network.

• An agile deep learning reinforcement with an experience replay model that is well-suited to 
solving the energy-efficient UAV-BS navigation problem under trajectory and AoI constraints

• The  numerical results also confirmed that effectiveness of the proposed DQN with 
experience replay memory under different network conditions  

Summary 84

Sarder Fakhrul Abedin, Md. Shirajum Munir, Nguyen H. Tran, Zhu Han, and Choong Seon Hong, “Data Freshness and Energy-

Efficient UAV Navigation Optimization: A Deep Reinforcement Learning Approach, IEEE Transactions on Intelligence Transportation 

System, Early Access
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Use Case 5: 3TO: THz-Enabled Throughput and 

Trajectory Optimization of UAVs in 6G Networks
• Introduction

• System Model

• Problem Formulation

• Solution Approach

• Simulation Results
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System model of THz-enabled UAVs network

S. S. Hassan, Y. M. Park, Y. K. Tun, W. Saad, Z. Han. and C. S. Hong, “3TO: THz-Enabled Throughput and Trajectory Optimization of UAVs in 6G

Networks by Proximal Policy Optimization Deep Reinforcement Learning," IEEE International Conference on Communications 2022 (ICC 2022).

✓ Problem Statement 

▪ Next-generation networks 

need to meet ubiquitous and 

high data-rate demand

▪ Exploring THz-enabled 

UAVs to facilitate ubiquitous 

6G mobile communication 

networks
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S. S. Hassan, Y. M. Park, Y. K. Tun, W. Saad, Z. Han. and C. S. Hong, “3TO: THz-Enabled Throughput and Trajectory Optimization of UAVs in 6G

Networks by Proximal Policy Optimization Deep Reinforcement Learning," IEEE International Conference on Communications 2022 (ICC 2022).

✓ This work considers the throughput and trajectory optimization of terahertz (THz)-enabled 

unmanned aerial vehicles (UAVs)

▪ That enables the ubiquitous demands in the sixth-generation (6G) communication networks.

✓ In the considered scenario, multiple UAVs must provide on-demand terabits per second 

(Tb/s) services to an urban area along with existing terrestrial networks

✓However, THz-empowered UAVs pose some new constraints, 

▪ Dynamic THz-channel conditions for ground users (GUs) association and UAV trajectory 

optimization to fulfill GU’s throughput demands

✓ Thus, a framework is proposed to address these challenges, where a joint UAVs-GUs 

association, transmit power, and the trajectory optimization problem is studied

Summary of Investigations
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S. S. Hassan, Y. M. Park, Y. K. Tun, W. Saad, Z. Han. and C. S. Hong, “3TO: THz-Enabled Throughput and Trajectory Optimization of UAVs in 6G

Networks by Proximal Policy Optimization Deep Reinforcement Learning," IEEE International Conference on Communications 2022 (ICC 2022).

Goal is to maximize the total throughput from all the deployed UAVs while satisfying the QoS 

and trajectory constraints of each GU and UAV, respectively.

✓ The throughput maximization problem can be defined as follows:

Optimization objective

QoS constraint

Each GU can be associated with at most one UAV

Total transmit power of the UAV have to be less 

than the maximum transmit power

Guarantees that the distance between UAVs is 

not as close as the minimum distance

UAVs speed constraint

Association

Power

Trajectory
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89
S. S. Hassan, Y. M. Park, Y. K. Tun, W. Saad, Z. Han. and C. S. Hong, “3TO: THz-Enabled Throughput and Trajectory Optimization of UAVs in 6G

Networks by Proximal Policy Optimization Deep Reinforcement Learning," IEEE International Conference on Communications 2022 (ICC 2022).

Proposed Solution

Successive Convex Approximation (SCA) for transmit power 

allocation

Balanced K-means Clustering (BKMC) for ground user 

associations
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S. S. Hassan, Y. M. Park, Y. K. Tun, W. Saad, Z. Han. and C. S. Hong, “3TO: THz-Enabled Throughput and Trajectory Optimization of UAVs in 6G

Networks by Proximal Policy Optimization Deep Reinforcement Learning," IEEE International Conference on Communications 2022 (ICC 2022).

Proposed solution

Proximal Policy Optimization Deep 

Reinforcement Learning for UAVs trajectory 

UAV Mobility Controller

Network Environment

Policy 

Optimization

Policy 

Evaluation

Replay Memory

UAVs Position

Agent

State Action

Proximal Policy Optimization (PPO)

• The state st(n) in learning time step t:

• The action in learning step t at time slot 

n is the speed and the moving:

• The reward in learning step t at time 

slot n is divided into three:

Speed and moving direction

Locations: UAV and user
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S. S. Hassan, Y. M. Park, Y. K. Tun, W. Saad, Z. Han. and C. S. Hong, “3TO: THz-Enabled Throughput and Trajectory Optimization of UAVs in 6G

Networks by Proximal Policy Optimization Deep Reinforcement Learning," IEEE International Conference on Communications 2022 (ICC 2022).

Simulation Results 

❑ To assess the performance of our proposed algorithm, we consider four benchmark algorithms as follows: 

• SU with RP: The algorithm which considers static UAVs (SU) positions with the random power (RP) allocation. 

• OU with RP: The algorithm uses the optimal UAVs (OU) trajectory with the random power (RP) allocation. 

• SU with PP: The algorithm assumes the static UAVs (SU) positions with the proposed power (PP) allocation. 

• OU with PP (proposed method): The algorithm considers the optimal UAV (OU) trajectory with the proposed power (PP) 

allocation.

Proximal policy optimization deep reinforcement 

learning (PPODRL)  learning results (reward)
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S. S. Hassan, Y. M. Park, Y. K. Tun, W. Saad, Z. Han. and C. S. Hong, “3TO: THz-Enabled Throughput and Trajectory Optimization of UAVs in 6G

Networks by Proximal Policy Optimization Deep Reinforcement Learning," IEEE International Conference on Communications 2022 (ICC 2022).

Simulation Results 

Achievable rate with benchmarks 

schemes
Achievable rate with UAVs UAVs trajectory obtained by 

proximal policy optimization deep 

reinforcement learning



NETWORKING 

INTELLIGENCE LAB

93

Use Case 6: Satellite-based ITS Data Offloading & 

Computation in 6G Networks
• Introduction

• System Model

• Problem Formulation

• Solution Approach

• Simulation Results
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Hassan, S. S., Park, Y. M., Tun, Y. K., Saad, W., Han, Z., & Hong, C. S. (2022). Satellite-based ITS Data Offloading & Computation in 6G Networks: A Cooperative Multi-Agent Proximal

Policy Optimization DRL with Attention Approach“, Submitted Revision to IEEE Transactions on Mobile Computing (TMC). Available at: https://doi.org/10.48550/arXiv.2212.05757

System model for ITS data offloading & computation 

▪ A service architecture for data-driven ITS task 

offloading and computation to MEC-enabled diverse 

satellite networks is studied.

▪ A joint delay and rental price minimization problem 

for different satellite servers while optimizing 

offloading task selection, computing, and bandwidth 

resource allocation.

▪ To handle the formulated mixed-integer non-linear 

programming (MINLP) problem, which is NP-hard, we 

propose a two-stage algorithm based on the Co-

MAPPO DRL algorithm in cooperation with the 

attention approach and convex theory. ITS: Intelligent transportation systems
MAPPO: Multi-agent proximal policy optimization
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Hassan, S. S., Park, Y. M., Tun, Y. K., Saad, W., Han, Z., & Hong, C. S. (2022). Satellite-based ITS Data Offloading & Computation in 6G Networks: A Cooperative Multi-Agent Proximal

Policy Optimization DRL with Attention Approach“, Submitted Revision to IEEE Transactions on Mobile Computing (TMC). Available at: https://doi.org/10.48550/arXiv.2212.05757

Optimization problem formulation for ITS task offloading

Offloading decisions

Communication 

bandwidth allocation

Computing resource 

allocation

Summation of associated CTE will be one at each time slot.

Total wireless bandwidth allocation ratio is less than or equal to one.

Weighted sum of mean 

service time and price

GEO-based Computing 

resource allocation

Allocated LMS and CubeSats computing resources do not exceed the threshold.

Communication time between CTE and related satellite is shorted than the 

maximum permitted time.

Only those CubeSats that are already in the neighborhood of LMS l can give 

services to CTE.

Each CTE can only associate with one satellite at a time.

Ensures that each CNS h has enough computing resources.

Ensures that bandwidth resources remains within the budget for each satellite.

Ensures that bandwidth resources remain within the budget for each satellite.

Number of tasks

Mean Service 

Time

Mean Service 

Price

CTEs: Crowed-sourced Transportation Entities

CNS: Core Network Server

LMS: LEO satellite-based MEC server
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Hassan, S. S., Park, Y. M., Tun, Y. K., Saad, W., Han, Z., & Hong, C. S. (2022). Satellite-based ITS Data Offloading & Computation in 6G Networks: A Cooperative Multi-Agent Proximal

Policy Optimization DRL with Attention Approach“, Submitted Revision to IEEE Transactions on Mobile Computing (TMC). Available at: https://doi.org/10.48550/arXiv.2212.05757

Proposed framework of Co-MAPPO DRL with Attention mechanism for ITS task offloading

• We introduced the ability to respond to 

situations in which the number of 

connected CTEs dynamically changes.

• Since the input size of the general NN 

model is fixed, we cannot effectively 

respond to the changing CTEs 

information we want. 

• Thus we proposes a learning network 

model regardless of the number of 

connected CTEs by adding attention in 

front of the input layer.

CTEs: Crowed-sourced Transportation Entities
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Hassan, S. S., Park, Y. M., Tun, Y. K., Saad, W., Han, Z., & Hong, C. S. (2022). Satellite-based ITS Data Offloading & Computation in 6G Networks: A Cooperative Multi-Agent Proximal

Policy Optimization DRL with Attention Approach“, Submitted Revision to IEEE Transactions on Mobile Computing (TMC). Available at: https://doi.org/10.48550/arXiv.2212.05757

Experimental Results

Objective value comparison of Co-MAPPO with benchmarks schemes for various sub-tasks. Service Time vs varying number of sub-tasks. Service Price vs varying number of sub-tasks.

Objective value comparison of Co-MAPPO with benchmarks schemes for varying task memory. Service Price vs varying task memory.Service time vs varying task memory.
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Hassan, S. S., Park, Y. M., Tun, Y. K., Saad, W., Han, Z., & Hong, C. S. (2022),”Satellite-based ITS Data Offloading & Computation in 6G Networks: A Cooperative Multi-Agent Proximal

Policy Optimization DRL with Attention Approach“, Submitted Revision to IEEE Transactions on Mobile Computing (TMC). Available at: https://doi.org/10.48550/arXiv.2212.05757

Experimental Results

Objective value comparison of Co-MAPPO with benchmarks schemes for varying task computation power. Service Price vs varying computation power.Service time vs varying computation power.

Offloading proportion vs computing memory Offloading proportion vs computing power.

Objective value comparison with 

baselines without convex optimization 

part (only DRL)
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Challenges and Ongoing Research 
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• There are still several challenging issues which are under unexplored:

• The optimal deployment of UAVs to get the maximum coverage area and strong wireless 
signal strength with low co-channel interference.

• Controlling the trajectory of the UAVs to make sure the safety distance between UAVs and the 
optimal resources (i.e., bandwidth, and power) allocation to get the maximum data rate by 
taking into account the energy constraint of the UAVs.

• Considering the optimal user association with the UAVs to achieve the highest rate.

• Space-Air-Ground channel modeling. 

Challenges and Ongoing Research 100
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Challenges and Ongoing Research 101

✓ Constellation’s resources problems
▪ Routing among satellites

▪ Beam placement and beam shaping 

▪ Frequency assignment

▪ Power allocation

▪ Federated Learning for resource sharing

▪ RIS based beamforming

✓ Limitations due to interactions
▪ Long-horizon forecasting in LEO environment

▪ Multiuser demand prediction

▪ Search space complexity

✓ New AI models and architecture
▪ Transfer learning for satellite architectures 

▪ New prediction models for intra-orbit resource management

▪ AI model for orbits as resources

▪ Collaborative multiagent systems for end-to-end service management

Satellite Communications and AI
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Thanks for your attention!!!

• Q&A
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